

SCHOOL OF ENGINEERING

DEPARTMENT OF PHARMACEUTICAL ENGINEERING

AY 2022-23

NH No.: 8, Village: Dhamdod, Ta. Mangrol, Near Kosamba, Surat – 394 125. (GUJARAT).

VISION - MISSION - PROGRAMME OUTCOMES - PROGRAMME SPECIFIC OUTCOMES

INSTITUTE VISION

To emerge as an Institute of Excellence by imparting value-based education aided with Research, Innovation and Entrepreneurial skills.

	INSTITUTE MISSION
1.	To impart the holistic engineering education of highest quality & prepare socially responsible
	professionals with entrepreneurial skills.
2.	To prepare value-aided engineering professionals to meet up global industry requirements
	by imparting cutting edge professional education.
3.	To inculcate the attitude of research and innovation among the stake holders through
	experiential and project-based teaching-learning pedagogy.
4.	To acquire global talent pool by providing world class amenities for teaching, learning &
	research.

Graduates will demonstrate ability to:

PEO No	PROGRAMME EUCATIONAL OBJECTIVES								
PEO 1	Solve real-world engineering problems, design and develop innovative and cost-effective								
	solutions exhibiting engineering skills/fundamentals to cater needs of society.								
PEO 2	Excel in Industry/technical profession, higher studies, and entrepreneurship exhibiting								
	comprehensive competitiveness.								
PEO 3	Exhibit professional ethics & values, effective communication, teamwork,								
	multidisciplinary approach, and ability to relate engineering issues to broader societal								
	framework.								

PO No	PROGRAMME OUTCOMES
PO 1	Engineering knowledge:
	Apply knowledge of engineering fundamentals, science, mathematics & engineering
	specialization for the solution of complex engineering problems.
PO 2	Problem analysis:
	Identify, formulate and analyze complex engineering problems leading to substantial
	conclusions using basic principles of mathematics, science and engineering.
PO 3	Design/development of solutions:

NH No.: 8, Village: Dhamdod, Ta. Mangrol, Near Kosamba, Surat – 394 125. (GUJARAT).

VISIO	N – MISSION – PROGRAMME OUTCOMES – PROGRAMME SPECIFIC OUTCOMES
PO No	PROGRAMME OUTCOMES
	Develop solutions for complex engineering problems and design system components or
	processes meeting specified needs having due consideration for the safety and societal $\&$
	environmental considerations.
PO 4	Conduct investigations of complex problems:
	Use research-based knowledge & methods like design of experiments, analysis and
	interpretation of data, and synthesis of the information to provide valid & viable
	conclusions.
PO 5	Modern tool usage:
	Create, select, and apply appropriate techniques, resources, and modern engineering and
	IT tools for prediction and modeling of complex engineering activities with an
	understanding of the limitations.
PO 6	The engineer and society:
	Apply cognitive learning by the contextual knowledge to assess societal, health, safety, legal
	and cultural issues and following responsibilities relevant to the professional engineering
	practice.
PO 7	Environment and sustainability:
	Understand the impact of the professional engineering solutions in societal and
	environmental contexts, and demonstrate the knowledge & skill needed for sustainable
	development.
PO 8	Values & Ethics:
	Apply basic moral values & ethical principles and pledge to professional ethics/norms and
	responsibilities of the engineering practice.
PO 9	Individual and team work:
	Function effectively as an individual/as a team member or as a leader in diverse teams, and
	in multidisciplinary settings.
PO 10	Communication:
	Communicate effectively on complex engineering activities with the engineering
	community and with society at large, such as, being able to comprehend and write effective
	reports and design documentation, make effective presentations, and give and receive clear
	instructions.
PO 11	Project management and finance:

NH No.: 8, Village: Dhamdod, Ta. Mangrol, Near Kosamba, Surat – 394 125. (GUJARAT).

VISIO	VISION – MISSION – PROGRAMME OUTCOMES – PROGRAMME SPECIFIC OUTCOMES						
PO No	PROGRAMME OUTCOMES						
	Demonstrate knowledge and understanding of the engineering and management principles						
	and apply these to one's own work, as a member and leader in a team, to manage projects						
	in multidisciplinary environments.						
PO 12	Life-long learning:						
	Recognize the need, do necessary preparation and ability to engage in independent and life-						
	long learning in the broadest context of technological change.						

PSO No	PROGRAMME SPECIFIC OUTCOMES (PSO)
	PHARMACEUTICAL ENGINEERING
PSO 1	Acquire and apply industry centric skills in the field of Pharmaceutical Engineering for the
	benefit of society.
PSO 2	Develop an attitude to accept global challenges and apply chemical & pharmaceutical
	engineering knowledge for solving engineering problems related to core and
	interdisciplinary fields.
PSO 3	Prepare technically competent employee, researcher, entrepreneur, excel in competitive
	exams, and boost passion for the higher studies.

Syllabus Book

B. Tech. (Pharmaceutical Engineering)

P P Savani University

School of Engineering

Effective From: 2022-23

Authored by: P P Savani University

CONTENT

Sr. No.	Content	Page No
1	Syllabi of First Year	1-34
2	Syllabi of Second Year	35-79
3	Syllabi of Third Year	80-122
4	Syllabi of Fourth Year	123-140

FIRST YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. PHARMACEUTICAL ENGINEERING PROGRAMME AY:2022-23

			Teaching Sche					g Scheme			Examination Scheme					
Sem	Course Code	urse Code Course Title	Offered By	Contact Hours Cr				Credit	t Theory		Practical		Tutorial		Total	
				Theory	Practical	Tutorial	Total		CE	ESE	CE	ESE	CE	ESE		
	SESH1070	Fundamental of Mathematics	SH	3	0	2	5	5	40	60	0	0	50	0	150	
	SESH1210	Applied Physics	SH	3	2	0	5	4	40	60	20	30	0	0	150	
	SEME1010	Engineering Graphics	ME	3	4	0	7	5	40	60	40	60	0	0	200	
1	SEME1020	Engineering Workshop	ME	0	2	0	2	1	0	0	50	0	0	0	50	
	SEPE1010	Basics of Pharmaceutical Sciences	PE	3	2	0	5	4	40	60	20	30	0	0	150	
	SEHV1010	Universal Human Values	SH	2	0	0	2	0	100	0	0	0	0	0	100	
						Total	26	19							800	
	SESH1080	Linear Algebra and Calculus	SH	3	0	2	5	5	40	60	0	0	50	0	150	
	SESH1240	Electrical & Electronics Workshop	ME	0	2	0	2	1	0	0	50	0	0	0	50	
	SECV1040	Basics of Civil & Mechanical Engineering	CV	4	2	0	6	5	40	60	20	30	0	0	150	
2	SESH1250	Microbiology & Biochemistry	SH	4	2	0	6	5	40	60	20	30	0	0	150	
	SECE1010	Basics of Computer & Programming	CE	3	2	0	5	4	40	60	20	30	0	0	150	
	CFLS1010	0 Linguistic Proficiency		2	0	0	2	2	40	60	0	0	0	0	100	
						Total	26	22							750	

Department of Applied Science & Humanities

Course Code: SESH1070

Course Name: Fundamentals of Mathematics

 $Prerequisite\ Course(s):\ Algebra,\ Geometry,\ Trigonometry\ \&\ Pre-Calculus\ till\ 12^{th}\ Standard\ level$

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exa	minatio	n Schem	ie (Marl	ks)	
Theory	Practical	Tutorial	Credit	Theory Practical		al Tutorial		Total		
				CE	ESE	CE	ESE	CE	ESE	
03		02	05	40	60			50		150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the course:

To help learners to

- Summarize concept of calculus to enhance ability of analyzing mathematical problems.
- Acquire knowledge and ability to work with differentiation and integration forapplications of mathematical techniques in engineering.
- Develop the tool of power series for learning advanced Engineering Mathematics.
- Analyse and solve system of linear equations and understand characteristics of Matrices.

Course Content:

	Section I							
Module	Content	Hours	Weightage					
No.	Content	Hours	in %					
1.	Calculus Limits, Continuity, Types of Discontinuity, Successive Differentiation, Rolle's Theorem, LMVT, CMVT, Maxima and Minima.	10	28					
2.	Sequence and Series-I Convergence and Divergence, Comparison Test, Integral Test, Ratio Test, Root Test, Alternating Series, Absoluteand Conditional Convergence.	12	22					
	Section II							
Module	Content	Hours	Weightage					
No.	Content	Hours	in %					

	Sequence and Series-II		
3.	Power series, Taylor and Macluarin series,	10	20
	Indeterminate forms and L'Hospitals Rule.		
	Matrix Algebra		
	Elementary Row and Column operations, Inverse of matrix, Rank	13	30
4.	of matrix, System of Linear Equations, Characteristic Equation,		
	Eigen values and Eigen vector, Diagonalization, Cayley Hamilton		
	Theorem, Orthogonal Transformation.		
	TOTAL	45	100

List of Tutorials:

Sr.	Name of Tutorial	Hours				
No.	rame of futorial					
1.	Calculus-1	04				
2.	Calculus-2	02				
3.	Integration	04				
4	Sequence and Series-1	04				
5.	Sequence and Series-2	04				
6.	Sequence and Series-3	02				
7.	Matrix Algebra-1	04				
8.	Matrix Algebra-2	02				
9.	Matrix Algebra-3	02				
10.	Matrix Algebra-4	02				
	TOTAL	30				

Text Book:

Title	Author(s)	Publication
Thomas' Calculus	George B. Thomas, Maurice D. Weir	Pearson
	and Joel Hass	
Elementary linear	Howard Anton and Chrish Rorres	Wiley
Algebra		

Reference Book:

Title	Author(s)	Publication
Advanced Engineering	E Kreyszig	John Wiley and
Mathematics		Sons
A textbook of Engineering	N P Bali and Manish Goyal	Laxmi
Mathematics		
Higher Engineering	B S Grewal	Khanna
Mathematics		
Engineering Mathematics	T Veerarajan	Tata Mc Graw Hill
For First Year		

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour ofduration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which will be evaluated out of 10 marks for each tutorial and average of the same will be converted to 30 marks
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After the completion of the course, the students will be able to:

SESH1070	FUNDAMENTALS OF MATHEMATICS			
CO 1	To recall the concepts of limit, continuity and differentiability for analysing			
	mathematical problems.			
CO 2	Explain concepts of limit, derivatives and integrals.			
CO 3	Analyze the series for its convergence and divergence to slove real world problems.			
CO 4	Evaluate linear system using matrices.			
CO 5	Adapt the knowledge of eigenvalues and eigenvectors for matrix diagonalization			

Mapping of CO with PO-PO

SESH1070	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	3	3	1	1								1
CO 2	3	2	1									1
CO 3	3	2	1	1								
CO 4	3	2	1									1
CO 5	3	3	1		1							1

Mapping of CO with PSO

SESH1070	PSO1	PSO2	PSO3
CO 1	3		
CO 2	1	1	
CO 3	1	2	
CO 4	2	1	
CO 5	2	2	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Calculus	1, 2, 3,4
2	Sequence and Series-I	1, 2, 3, 4
3	Sequence and Series-II	1, 2, 3, 4
4	Matrix Algebra	1, 2, 3,4

Department of Applied Science & Humanities

Course Code: SESH1210 Course Name: Applied Physics Prerequisite Course(s): --

Teachi	ing Scheme (Hours/Wee	ek)		Examination Scheme (Marks)				TOTAL	
Theory	Practical	Tutorial	Credit	Theory Practical			Tutor	ial		
03	02		04	CE	ESE	CE	ESE	CE	ESE	150
				40	60	20	30			

CE: Continuous Evaluation, **ESE:** End Semester Exam

Objective(s) of the Course:

- To assist students in preparing for a future in engineering, where physics principles can be used to enhance technology.
- Consciousness about the topics such as Quantum mechanics, Solid State Physics, Lasers and fiber, Semiconductors and electronics.

Course Content:

	Section I		
Module		Hours	Weightagein
No.	Content		%
	Quantum Mechanics:		
1.	Wave-Particle Duality, De-Broglie Matter Wave, Phase and		
	Group Velocity, Heisenberg Uncertainty Principle and its	06	15
	Applications, Wave Function and its Significance,		
	Schrodinger's Wave Equation, Particle in One Dimensional Box		
	Acousic and Ultrasonic:		
2.	Introduction, Classification and Characterization of Sound,		
	Absorption Coefficients, Sound Absorbing Materials, Sound	05	10
	Insulation, Ultrasonic, Properties of Ultrasonic, Generation		
	of		
	Ultrasonic Applications of Ultrasonic.		
	Solid State Physics		
3.	Introduction, Lattice Points and Space Lattice, Unit Cells and		
	LatticeParameters, Primitive Cell, Crystal Systems. The Bravais	06	10
	Space Lattices. Miller Indices, X-Ray Properties, Diffraction		
	and Bragg's Law, Bragg's X-Ray Spectrum		
	Nanophysics		
4.	Nanoscale, Surface to Volume Ratio, Surface Effects on		
	Nanomaterials, Quantum Size Effects, Nanomaterials and	06	15
	Nanotechnology, Unusual Properties of Nanomaterials,		
ı	Synthesis of Nanomaterials, Applications of Nanomaterials		

	Section II		
Module No.	Content	Hours	Weightage in %
5.	Non-Linear Optics: Laser, Spontaneous and Stimulated Emission of Light, Applications of Laser. Fundamental Ideas about Optical Fibre, Advantages of Optical Fibre of Optical Fibre, Applications of Optical Fibre.	07	12
6.	DC and AC Circuits Fundamentals Introduction of Electrical Current, Voltage, Power and Energy; Sources of Electrical Energy Inductor and Capacitor, Fundamental Laws of Electric Circuits – Ohm's Law and Kirchhoff's Laws; Analysisof Series, Parallel and Series-Parallel Circuits. Alternating Voltages and Currents and their Vector and Time Domain Representations, Average and Rms Values, From Factor, Phase Difference, Power and Power Factor, Purely Resistive Inductive and Capacitive Circuits, R-L, R-C, R-L-C Series Circuits, Impedance and Admittance, Circuits in Parallel, Series and Paralle Resonance.	08	25
7.	Electronics: Semiconductors, Intrinsic and Extrinsic Semiconductor Advantages of Semiconductor Devices, Diodes, Transistors, Types of Bipolar Junction Transistor, Unijunction Junction Transistor, FET and MOSFETS.	07	13
	TOTAL	45	100

List of Practical:

Sr.	Name of the experiment	Hours
No.		
1	Volt-Ampere Characteristics of Light Emitting Diode	02
2	Volt-Ampere Characteristics of Zener Diode	02
3	To determine value of Planck's constant (h) using a photovoltaic cell	02
4	To determine the Hall coefficient (R) and carrier concentration of a given	04
	material (Ge) using Hall effect.	
5	To study the Capacitors in series and parallel DC circuit.	04
6	To determine velocity of sound in liquid using Ultrasonic Interferometer	04
7	To study RLC Series circuit.	02
8	To determine numerical aperture of an optical fiber.	04
9	Determination of Young's Modulus of given material.	04
10	Analysis of errors.	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Concept of the Modern Physics	A. Beiser	Tata McGraw-Hill Education
Basic electrical engineering	Kothari and Nagrath	Tata McGraw-Hill Education
Lasers and Nonlinear Optics	G.D. Baruah	Pragati Prakashan

Web Material Link(s):

• http://nptel.ac.in/course.php

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the Course Coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation Consist of Performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva and practical performance consist of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SESH1210	APPLIED PHYSICS									
CO 1	Understand the framework of quantum mechanics and apply the knowledge of basic									
	uantum mechanics to construct one dimensional Schrodinger's wave equation.									
CO 2	Classify the phenomenon of acoustics and ultrasonic in various engineering field and									
	apply it for various engineering and medical fields. interpret the concept of									
	nanotechnology and understand the synthesis and applications of nanomaterials from									
	technological prospect.									
CO 3	Discover the types and properties of superconductors. relate the behavior of									
	superconductors at high temperatures.									
CO 4	Describe the laser and articulate the idea of optical fiber communications and apply									
	the concepts of lasers and optical fiber communications in every possible sector.									
CO 5	Distinguish pure, impure semiconductors and characteristics of semiconductor									
	devices. This will be able to use basic concepts to analyze and design a wide range of									
	semiconductor devices.									

Mapping of CO with PO

SESH1210	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	2	2	1			2						1
CO 2	2	3	2			2	3					3
CO 3	2	2	2			2	3					3
CO 4	2	3	2			2	3					3
CO 5	2	3	2			2	3					3

Mapping of CO with PSO

SESH1210	PSO1	PSO2	PSO3
CO 1	3		
CO 2	3		
CO 3	3		
CO 4	2		
CO 5	3		

1: Remember	2: Understand	3: Apply		
4: Analyze	5: Evaluate	6: Create		

Module No	Content	RBT Level
1	Quantum Mechanics:	2,3
2	Acoustic and Ultrasonic:	1,3
3	Nanophysics	2,4
4	Superconductivity	2,6
5	Non linear optics-I	1,2
6	Non linear optics-II	2,3
7	Electronics	3,6

Department of Mechanical Engineering

Course Code: SEME1010

Course Name: Engineering Graphics

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teacl	hing Scheme (Examination Scheme (Marks)								
Theory	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
				CE	ESE	CE	ESE	CE	ESE	
03	04		05	40	60	40	60			200

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- know conventions and the methods of engineering drawing.
- interpret engineering drawings using fundamental technical mathematics.
- construct basic and intermediate geometry.
- improve their visualization skills so that they can apply these skills in developing newproducts.
- improve their technical communication skill in the form of communicative drawings.
- comprehend the theory of projection.

Course Content:

	Section I		
Module	Content	Hours	Weightage
No.			in %
1.	Introduction: Importance of the Course; Use of Drawing Instruments and accessories; BIS – SP – 46; Lettering, Dimensioning and Lines; Representative Fraction; Types of Scales (Plain and Diagonal Scales); Construction of Polygons.		05
2.	Engineering Curves: Classification and Application of Engineering Curves; Construction of Conics, Cycloidal Curves, Involutes and Spiral along with Normal and Tangent to each.		15
3.	Principles of Projections: Types of Projections; Introduction of Principle Planes of Projections. Projection of Points & Line: Projection of Points in all four Quadrants; Projection of Lines with its inclination to one Referral Plane & two Referral Planes.		30

	Projection of Plane:		
	Projection of Planes (Circular and Polygonal) with inclination to		
	one Referral Plane and two Referral Planes; Concept of Auxiliary		
	Projection Method.		
	Section II		
Module	Content	Hours	Weightage
No.			in %
	Projection and Section of Solids:		
	Projection of solids: Polyhedral, Prisms, Pyramids, Cylinder, Cone,		
4.	Auxiliary Projection Method, One View, Two View and Three View	08	14
	Drawings. Missing View, Rules for Selection of Views; Sectional		
	View, Section Plane Perpendicular to the HP &VP and other Various		
	Positions, True Shape of Sections.		
	Orthographic Projection:		
	Types of Projections: Principle of First and Third Angle Projection -		
5.	Applications & Difference; Projection from Pictorial view of Object,	07	18
	View from Front, Top and Sides; Full Section		
	View.		
	Isometric Projections and Isometric Drawing:		
6.	Isometric Scale, Conversion of Orthographic views intoIsometric	07	18
	Projection, Isometric View or Drawing.		
	TOTAL	45	100

List of Practical:

Sr.	Name of Practical	Hours
No.		
1.	Introduction sheet (dimensioning methods, different types of line, construction of different polygon, divide the line and angle in parts, use ofstencil, lettering)	08
2.	Plane scale and diagonal scale	04
3.	Engineering curves	08
4.	Projection of Points & Lines	06
5.	Projection of Planes	80
6.	Projection of solid & Section of solid	10
7.	Orthographic projection	80
8.	Isometric projection	08
	TOTAL	60

Text Book(s):

Title	Author(s)	Publication
A Text Book of Engineering Graphics	P J Shah	S. Chand & Company Ltd., New Delhi
Engineering Drawing	N D Bhatt	Charotar Publishing House, Anand

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of Performance of Practical/Tutorial which will be evaluatedout of 10 for each practical/Tutorial and average of the same will be converted to 20 Marks.
- Internal Viva consists of 20 Marks.
- Practical performance/quiz/drawing/test will consist of 30 Marks during End SemesterExam.
- Viva/Oral performance will consist of 30 Marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEME1010	ENGINEERING GRAPHICS									
CO 1	earn and understand the bis standards, conventions and methods of engineering									
	drawing.									
CO 2	Explore the different methods to draw various engineering curves and its applications.									
CO 3	Construct basic and intermediate geometry and comprehend the theory of projection.									
CO 4	Improve visualization skills and apply it to develop a new product.									

Mapping of CO with PO-PO

S	EME1010	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
	CO 1	1	1	1			2				3		1
	CO 2	1	1	1		1					3		1
	CO 3	1	1	1		1					3		1
	CO 4	1	1	2		1					3		1

Mapping of CO with PSO

SEME1010	PSO1	PSO2	PSO3
CO 1	1		
CO 2	2	1	1
CO 3	2	1	1
CO 4	2	1	1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1, 2
2	Engineering Curves	1, 2, 3
3	Principles of Projections	1, 2, 3
4	Projection and Section of Solids	2, 3, 4
5	Orthographic Projection	2, 3, 4
6	Isometric Projections and Isometric Drawing	2, 3, 4

Department of Mechanical Engineering

Course Code: SEME1020

Course Name: Engineering Workshop

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teacl	Teaching Scheme (Hours/Week)			Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	The	eory	Prac	tical	Tuto	orial	Total
				CE	ESE	CE	ESE	CE	ESE	
	02		01			50				50

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about the safety measures required to be taken while using working in workshop.
- learn about how to select the appropriate tools required for specific operation.
- learn about different manufacturing technique for production out of the given raw material.
- understand applications of machine tools, hand tools, power tools and welding process.

List of Practical:

Sr. No	Name of Practical	Hours	
1.	Introduction and Demonstration of Safety Norms. Different Measuring		
	Instruments.		
2.	To Perform a Job of Fitting Shop.	06	
3.	To Perform a Job of Carpentry Shop.		
4.	To Perform a Job of Sheet Metal Shop.		
5.	To Perform a Job of Black Smithy Shop.		
6.	Introduction and Demonstration of Grinding & Hacksaw Cutting Machine.		
7.	Introduction and Demonstration of Plumbing Shop & Welding Process.		
	TOTAL	30	

Text Book(s):

Title	Author(s)	Publication
Elements of Workshop Technology	Hajra Chaudhary S. K.	Media promoters &
Vol. I		Publishers
Workshop Technology Vol. I and II	Raghuvanshi B.S.	Dhanpat Rai & Sons

Reference Book(s):

Title	Author(s)	Publication
Workshop Technology Vol. I	W.A.J. Chapman	Edward Donald Publication
Workshop Practices	H S Bawa	Tata McGraw-Hill
Basic Machine Shop Practice Vol. I, II	Tejwani V. K.	Tata McGraw-Hill

Web Material Link(s):

• http://nptel.ac.in/course.php

Course Evaluation:

Practical:

- Continuous Evaluation Consist of Performance of Practical which will be evaluated out of 10for each practical/Tutorial and average of the same will be converted to 30 Marks.
- Internal Viva consists of 20 Marks.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEME1020	ENGINEERING WORKSHOP
CO 1	Understand the various measuring instruments.
CO 2	Understand the safety norms required in the workshop.
CO 3	Understand the application of various tools required for different operations.
CO 4	Remember the process of manufacture from a given raw material.
CO 5	Explain various manufacturing processes in machine shop.

Mapping of CO with PO-PO

SEME1020	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2					2			2		1	2
CO 2						3		3	3		1	3
CO 3	2					2			1		1	3
CO 4	2								3		2	3
CO 5	2								3		2	3

Mapping of CO with PSO

11 0			
SEME1020	PSO1	PSO2	PSO3
CO 1	2	3	2
CO 2			
CO 3	2	3	2
CO 4	3	3	3
CO 5	3	3	3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Practical No.	Content	RBT Level
1	Introduction	1,2,4
2	Fitting shop	1,2,3
3	Carpentry and drilling shop	1,2,3
4	Sheet metal shop	2,3,4
5	Smithy shop	2,3,4
6	Introduction to machine tools	2,3,4
7	Introduction to welding and plumbing	2,3,4

Department of Pharmaceutical Engineering

Course Code: SEPE1010

Course Name: Basics of Pharmaceutical Sciences

Prerequisite Course(s): ---

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exa	minatio	on Scher	ne (Marks)		
Theory	Practical	Tutorial	Credit	The	eory	Prac	tical	Tutorial		Total
Theory	Tractical	racoriai	Great	CE	ESE	CE	ESE	CE	ESE	Total
03	022		04	40	60	20	30			150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective of the Course:

To help learners to

- Explain the gross morphology, structure and functions of various organs of the human body.
- Describe the various homeostatic mechanisms and their imbalances.
- Identify the various tissues and organs of different systems of human body.
- Perform the various experiments related to special senses and nervous system.
- Appreciate coordinated working pattern of different organs of each system

Course Content:

	Section I		
Module	Content	Hours	Weightage in %
No.			
1.	Introduction to Human body, cells, tissues, organs and		
	systems		
	Definition and scope of anatomy and physiology, levels of		
	structural organization and body systems, basic life processes,		
	homeostasis, basic anatomical terminology.		
	Structure and functions of cell, transport across cell membrane,		
	cell division, cell junctions. General principles of cell		
	communication, intracellular signalling pathway activation.	10	30
	Classification of tissues, structure, location and functions of		
	epithelial, muscular and nervous and connective tissues.		

2. Module No.	Systems: Introduction, classification, structure of organs involved, electrophysiology Nervous systems Endocrine system Excretory system Reproductive system Skeleton system Content	12 Hours	20 Weightage in %
3.	Pathophysiology of various diseases Basic principles of Cell injury, inflammation and repair Hypertension, congestive heart failure, ischemic heart disease (angina, myocardial infarction, atherosclerosis and arteriosclerosis) Asthma, Chronic obstructive airways diseases Acute and chronic renal failure Iron deficiency, megaloblastic anemia (Vit B12 and folic acid), sickle cell anemia, thalasemia, hereditary acquired anemia, hemophilia. Diabetes, thyroid diseases, disorders of sex hormones Epilepsy, Parkinson's disease, stroke, psychiatric disorders: depression, schizophrenia and Alzheimer's disease. Peptic Ulcer, Inflammatory bowel diseases, jaundice, hepatitis (A, B, C, D, E, F) alcoholic liver disease. Rheumatoid arthritis, osteoporosis, and gout classification, etiology and pathogenesis of cancer Rheumatoid Arthritis, Osteoporosis, Gout Classification, etiology and pathogenesis of Cancer Meningitis, Typhoid, Leprosy, Tuberculosis Urinary tract Infections AIDS, Syphilis, Gonorrhea	13	30
4.	Natural medicines and holistic approaches of management of diseases. Role of natural medicines in allopathy and traditional systems of medicines like Ayurveda, Unani, Siddha, and Homeopathy systems of medicine. Cultivation, Collection, Processing and storage of drugs of natural origin and Conservation of medicinal plants. Concept of Tridosha and Ayurvedic principles of treatment of diseases.	10	20
	TOTAL	45	100

List of Practical/Tutorial:

Sr. No	Name of Practical	Hours
1.	Study of compound microscope.	02
2.	Microscopic study of epithelial and connective tissue	03
3.	Microscopic study of muscular and nervous tissue	03

4.	Recording of body temperature, blood pressure, heart rate and lung vital	03
	capacity.	
5.	Determination of bleeding time, clotting time, Hb content and blood group.	03
6.	Study of digestive, respiratory, cardiovascular systems, urinary and	03
	reproductive systems with the help of models, charts and specimens.	
7.	Recording of basal mass index	02
8.	Demonstration of total blood count by cell analyser.	03
9.	Permanent slides of vital organs and gonads.	04
10.	Determination of cloud point of a surfactant in the presence of salts.	04
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Essentials of Madical Dhysiology	K. Sembulingam and P.	Jaypee brother's medical
Essentials of Medical Physiology	Sembulingam	publishers, New Delhi.
Anatomy and Physiology in	Kathleen J.W. Wilson,	New York Publishers
Health and Illness	Churchill Livingstone	
Text book of Medical Physiology	Arthur C, Guyton and	Miamisburg, OH, U.S.A.
	John E Hall	
Practical workbook of Human	K. Srinageswari and Rajeev	Jaypee brother's medical
Physiology	Sharma	publishers, New Delhi.

Reference book:

Title	Author/s	Publication	
Physiological basis of Medical	VAV: II: O VAV: II-: C-	Discouries MILICA	
Practice-Best and Tailor	Williams & Wilkins Co	Riverview, MI USA	
Textbook of Medical Physiology	Arthur C, Guyton and John. E.	Miamighurg OH HCA	
Textbook of Medical Physiology	Hall.	Miamisburg, OH, U.S.A.	
Human Dhysiology (yel 1 and 2)	Dr. C.C. Chattauria	Academic Publishers	
Human Physiology (vol 1 and 2)	Dr. C.C. Chatterrje	Kolkata	

Course Evaluation:

Theory:

- Continuous Evaluation consists of two internal exams which carry 30 marks each and the final evaluation will be counted with average of 30 Marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End semester examination consists of 60 marks.

Practical:

- Continuous Evaluation consist of performance based on practical which should be evaluated out 10 marks each in the next turn and average of the same will be converted to 10 marks.
- Internal viva component carries 10 marks of evaluation.
- Practical performance/quiz/drawing/test consists of 15 marks evaluation during end semester exam.
- Viva/Oral performance consists of 15 marks evaluation during end semester examination.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE1010	BASIC OF PHARMACEUTICAL SCIENCES
CO 1	Describe basics functions of cells, tissues, organs and systems involved in normal
	functioning of human body.
CO 2	Summarize functional characteristics of various systems.
CO 3	Describe the fundamental physiological mechanism involves in demonstrated practical.
CO 4	Interlinking various systems in terms of feedback mechanisms and perform various
	tests related to blood cells counts which relates with the diagnosis of various disease
	conditions.
CO 5	Appreciate the value of indigenous medicinal systems of india like ayurveda in
	treatment of various diseases.

Mapping of CO with PO

	11 0												
SEI	PE1010	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
	01	1					3		3	1	1		
	CO 2					1	3				1		
	CO 3	1				1	2		3	1			1
	CO 4								3	1	1		3
	CO 5						3						1

Mapping of CO with PSO

SEPE1010	PSO1	PSO2	PSO3
CO 1	1		2
CO 2	1		3
CO 3	1		1
CO 4	3	3	
CO 5		1	1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Human body, cells, tissues, organs	1,2
	and systems	
2	Systems: Introduction, classification, structure of	1,2
	organs involved, electrophysiology	
3	Pathophysiology of various diseases	2,3,4
4	Natural medicines and holistic approaches of	1,2,3,4
	management of diseases	

Department of Science & Humanities

Course Code: SESH1080

Course Name: Linear Algebra & Calculus

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
				CE	ESE	CE	ESE	CE	ESE	
03			05	40	60			50		150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- learn about and work with vector space, linear transformation and inner productspace.
- apply concepts of linear algebra for solving science and engineering problems.
- introduce the concept of improper integral and Beta-Gamma Function.
- develop the tool of Fourier series for learning advanced Engineering Mathematics.

Course Content:

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Vector Space Concept of vector space, Subspace, Linear Combination, Linear Dependence and Independence, Span, Basis and Dimension, Row Space, Column Space and Null Space, Rank and Nullity.	09	20				
2.	Linear Transformation Introduction of Linear Transformation, Kernal and Range, Rank and Nullity, Inverse of Linear Transformation, Rank Nullity Theorem, Composition of Linear Maps, Matrix associated with linear map.	07	15				
3.	Inner Product Space Inner Product, Angle and Orthogonality, Orthogonal projection, Gram- Schmidt process and QR Decomposition, Least square decomposition, Change ofbasis.	07	15				

	Section II		
Module No.	Content	Hours	Weightage in %
4.	Beta and Gamma function Improper Integrals, Convergence, Properties of Beta and Gamma Function, Duplication Formula (withoutproof)	06	14
5.	Fourier Series Periodic Function, Euler Formula, Arbitrary Period, Even and Odd function, Half Range Expansion, Parseval's Theorem	08	18
6.	Curve tracing Tracing of Cartesian Curves, Polar Coordinates, Polar and Parametric Form of Standard Curves, Areas and Length in Polar co-ordinates	08	18
	TOTAL	45	100

List of Tutorial:

Sr.	Name of Tutorial	Hours
No.		
1.	Vector Space-1	04
2.	Vector Space-2	02
3.	Linear Transformation-1	04
4	Linear Transformation-2	02
5.	Inner Product-1	04
6.	Inner Product-2	02
7.	Beta and Gamma Function-1	04
8.	Beta and Gamma Function-2	02
9.	Curve tracing-1	04
10.	Curve tracing-2	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Thomas' Calculus	George B. Thomas, Maurice D. Weir and Joel Hass	Pearson
Elementary Linear Algebra	Howard Anton and Chrish Rorres	Wiley

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests, each of 30 marks and 1 hour of durationand average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the CourseCoordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous evaluation consists of performance of tutorial which will be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 30 marks.
- MCQ based examination consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After the completion of the course, the students will be able to:

SESH1080	LINEAR ALGEBRA & CALCULUS
CO 1	Determine the basis and dimension of vector spaces and subspaces.
CO 2	Discuss the matrix representation of a linear transformation given bases of the relevant
	vector space.
CO 3	Identify the ordinary differentials and partial differentials and solve the maximum and
	minimum value of function.
CO 4	Classify gamma, beta functions & their relation which is helpful to evaluate some
	definite integral arising in various branch of engineering.
CO 5	Construct the graphs for function with intervals and identify more application for
	function.

Mapping of CO with PO-PO

SESH1080	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1	2	1										
CO 2	1											
CO 3	2	1										
CO 4	1	1										
CO 5	1											

Mapping of CO with PSO

SESH1080	PSO1	PSO2	PSO3
CO 1			
CO 2			
CO 3	1		
CO 4			
CO 5			

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Vector Space	1, 2, 3, 4

2	Linear Transformation	1, 2, 3, 4
3	Inner product space	1, 2, 3, 4
4	Partial Derivatives	1, 2, 4, 5
5	Beta and Gamma Function	1, 2, 4, 5
6	Curve Tracing	1, 2, 4, 5, 6

Department of Applied sciences & Humanities

Course Code: SESH1240

Course Name: Electrical & Electronics WorkshopPrerequisite

Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
				CE	ESE	CE	ESE	CE	ESE	
	02		01			50				50

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- identify basic fundamental electronic components in circuits.
- learn to use common electronic component on breadboard.
- understand components of instruments, terminology and applications.

List of Practical:

Sr No	Name of Practical	Hours
1	Understanding of electronic component with specification.	02
2	Understanding of Galvanometer, Voltmeter, Ammeter, Wattmeter and Multimeter	02
3	Understanding of breadboard connections	02
4	Drawing and wiring of basic circuits on breadboard	02
5	Verification of Ohm's law	02
6	Half wave, full wave using centre tap transformer and full wave bridgerectifier	03
7	Kirchhoff's laws (KVL, KCL).	03
8	Faraday's laws of Electromagnetic Induction and Electricity Lab	04
9	LDR characteristics	02
10	Study of CRO, measurement of amplitude (voltage) & time period (frequency)	04
11	PCB designing	04
	TOTAL	30

Text Book:

Title	Author/s	Publication
Electronic Principles	Albert Malvino and David J Bates	Mc Graw Hill(7th Edition)

Reference Book:

Title	Author/s	Publication
Electronic Devices	Thomas L. Floyd	Pearson (7th Edition)
Electronic Devices and Circuits	David A. Bell	Oxford Press (5th Edition)
Integrated Electronics	Jacob Millman, Christos	Tata McGraw Hill (2nd Edition)

Course Evaluation:

Practical:

- Continuous Evaluation Consist of Performance of Practical which should be evaluated out of 10 foreach practical in the next turn and average of the same will be converted to 20 Marks.
- Internal viva consists of 20 marks.

Course Outcome(s):

After the completion of the course, the students will be able to:

SESH1240	ELECTRICAL & ELECTRONICS WORKSHOP
CO 1	Identify the ability to design various electronic circuit on a bread board.
CO 2	Recognize the basic electronic devices and components in a circuit connection.
CO 3	Identify the ability to design a PCB.
CO 4	Define the practical side of basic physics laws.

Mapping of CO with PO-PO

SESH1240	PO1	PO2	P03	P04	PO5	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2	3	2	3	3	2	2		3			3
CO 2	2	3	2	3	3	2	2		3			3
CO 3	2	3	3	3	3	2	2		3			3
CO 4	2	3	2	3	3	2	2		3			3

Mapping of CO with PSO

11 0			
SESH1240	PSO1	PSO2	PSO3
CO 1	3	2	
CO 2	3	2	
CO 3	3	2	
CO 4	3	2	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level	
1	Electronic Components	1,2,3,4	
2	Electronic Devices	1,2,3,4	
3	Understanding of Breadboard	1,2,4,5,6	
4	Wiring of Breadboard	1,2,4,5,6	
5	Ohm's Law	1,2,3,4	
6	Rectifiers	1,2,3,5,6	
7	KCL & KVL	1,2,3,4,6	
8	LDR	1,2,3,6	
9	Electricity Lab	1,2,3,4	
10	CRO	1,2,4,5	
11	PCB	1,2,6	

Department of Civil Engineering

Course Code: SECV1040

Course Name: Basics of Civil & Mechanical Engineering

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching S	Teaching Scheme (Hours/Week)			Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	Theory	Theory Practical Tutorial			al	Total	
				CE	ESE	CE	ESE	CE	ESE	
04	02		05	40	60	20	30			150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- study the fundamentals of mechanical systems.
- study and appreciate significance of mechanical engineering in different fields of engineering.
- carry out simple land survey and recent trends in civil engineering.
- understand components of building, building terminology and construction materials.

Course Content:

	Section I					
Module	Content	Hours	Weightage			
No.			in %			
	Civil Engineering: An Overview					
	Introduction, Branches, Scope, Impact, Role of Civil Engineer, Unit					
1.	of Measurement, Unit Conversion (Length, Area, Volume)	03	04			
	Introduction to Surveying and Levelling:					
	Introduction, Fundamental Principles, Classification Linear					
	Measurement: Instrument Used, Chaining on Plane Ground,					
	Offset, Ranging					
	Angular Measurement: Instrument Used, Meridian,					
2.	Bearing, Local Attraction	07	12			
	Levelling: Instrument Used, Basic Terminologies, Types of					
	Levelling, Method of Levelling					
	Modern Tools: Introduction to Theodolite, Total Station,GPS					
	Building Materials and Construction:					
3.	Introduction (Types and Properties) to Construction	10	14			
	Materials Like Stone, Bricks, Cement, Sand, Aggregates,					

Concrete, Steel. Classification of Buildings, Types of Loads Acting on Buildings, Building Components and their Functions, Types of Foundation and Importance, Symbols Used in Electrical Layout, Symbols Used for Water Supply, Plumbing and Sanitation Construction Equipment: Types of Equipment-Functions, Uses. Hauling Equipment-Truck, Dumper, Trailer. Hoisting Equipment-Pulley, Crane, Jack, Winch, Sheave Block, Fork Truck. Pneumatic Equipment-Compressor. Conveying Equipment-Package, Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE. Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material Section II Module Content Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and BioFuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive TOTAL 60 100				
Functions, Types of Foundation and Importance, Symbols Used in Electrical Layout, Symbols Used for Water Supply, Plumbing and Sanitation Construction Equipment: Types of Equipment: Functions, Uses. Hauling Equipment-Truck, Dumper, Trailer. Hoisting Equipment- Pulley, Crane, Jack, Winch, Sheave Block, Fork Truck. Pneumatic Equipment-Compressor. Conveying Equipment-Package, Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE. Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material Section II Module No. Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and BioFuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive		9 71		
Used in Electrical Layout, Symbols Used for Water Supply, Plumbing and Sanitation Construction Equipment: Types of Equipment- Functions, Uses. Hauling Equipment-Truck, Dumper, Trailer. Hoisting Equipment-Pulley, Crane, Jack, Winch, Sheave Block, Fork Truck. Pneumatic Equipment-Compressor. Conveying Equipment-Package, Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE. Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material Section II Module No. Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and BioFuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive				
Plumbing and Sanitation Construction Equipment: Types of Equipment- Functions, Uses. Hauling Equipment- Truck, Dumper, Trailer. Hoisting Equipment- Pulley, Crane, Jack, Winch, Sheave Block, Fork Truck Pneumatic Equipment-Compressor. Conveying Equipment- Package, Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE. Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material Content Hours Weightage in % Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non- Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio- Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive				
4. Construction Equipment: Types of Equipment- Functions, Uses. Hauling Equipment- Truck, Dumper, Trailer. Hoisting Equipment- Pulley, Crane, Jack, Winch, Sheave Block, Fork Truck. Pneumatic Equipment-Compressor. Conveying Equipment- Package, Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE. Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material Section II Module No. Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non- Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio- Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive				
Types of Equipment- Functions, Uses. Hauling Equipment- Truck, Dumper, Trailer. Hoisting Equipment- Pulley, Crane, Jack, Winch, Sheave Block, Fork Truck. Pneumatic Equipment-Compressor. Conveying Equipment- Package, Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE. Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material Section II Module No. Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non- Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio- Fuels, LPG, CNG, Calorific Value Basics of L. Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of L. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive				
Truck, Dumper, Trailer. Hoisting Equipment- Pulley, Crane, Jack, Winch, Sheave Block, Fork Truck. Pneumatic Equipment-Compressor. Conveying Equipment- Package, Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE. Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material Module No. Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and BioFuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive				
4. Jack, Winch, Sheave Block, Fork Truck. Pneumatic Equipment-Compressor. Conveying Equipment- Package, Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE. Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material Module No. Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and BioFuels, LPG, CNG, Calorific Value Basics of LC Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of L. C. Engines Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive 04 08 05 10 10 10 10 10 10 10 10 10				
4. Equipment-Compressor. Conveying Equipment- Package, Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE. Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material **Section II** Module No. **Basic Concepts of Thermodynamics:* Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics **Fuels and Energy:* Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and BioFuels, LPG, CNG, Calorific Value **Basics of I.C Engines:* Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines **Power Transmission Elements:* Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive				
Screw, Flight/scrap, Bucket, Belt Conveyor. Drill, Tractor, Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE. Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material **Section II** Module No. **Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics **Fuels and Energy:* Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non- Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio- Fuels, LPG, CNG, Calorific Value **Basics of I.C Engines:* Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines **Power Transmission Elements:* Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive	4.		04	08
Ripper, Rim Pull, Dredger, Drag Line, Power Shovel, JCB, HOE. Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material Section II Module No. Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non- Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio- Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive				
Recent Trends in Civil Engineering: Mass Transportation, Rapid Transportation, Smart City, Sky Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material Section II Module No. Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non- Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio- Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive Ready Mix Park Mix Plant, 12 13 14 16 16				
Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material Section II				
5. Scarper, Dams, Rain Water Harvesting, Batch Mix Plant, Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material Section II				
Ready Mix Concrete Plant, Green Building, Earth Quake Resisting Building, Smart Material Section II	_		06	12
Resisting Building, Smart Material Module No.	5.	-	06	12
Module No. Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive 10				
No. Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive				
Basic Concepts of Thermodynamics: Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non- Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio- Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive	Module	Content	Hours	Weightage
Prime Movers - Meaning and Classification; the Concept of Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive	No.			in %
Force, Pressure, Energy, Work, Power, System, Heat, Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non- Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio- Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive		Basic Concepts of Thermodynamics:		
6. Temperature, Specific Heat Capacity, Internal Energy, Specific Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive		Prime Movers - Meaning and Classification; the Concept of		
Volume; Thermodynamic Systems, All Laws of Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive		Force, Pressure, Energy, Work, Power, System, Heat,		
Thermodynamics Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive	6.	Temperature, Specific Heat Capacity, Internal Energy, Specific	04	80
Fuels and Energy: Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive		Volume; Thermodynamic Systems, All Laws of		
Fuels Classification: Solid, Liquid and Gaseous; their Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive		<u>-</u>		
Application, Energy Classification: Conventional and Non-Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive				
7. Conventional Energy Sources, Introduction and Applications of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive		-		
of Energy Sources like Fossil Fuels, Solar, Wind, and Bio-Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive	_		0.4	00
Fuels, LPG, CNG, Calorific Value Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive	/.		04	08
8. Basics of I.C Engines: Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive		<u> </u>		
8. Construction and Working of 2 Stroke & 4 Stroke Petrol and Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive				
8. Diesel Engines, Difference Between 2-Stroke - 4 Stroke Engine & Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive		_		
& Petrol-Diesel Engine, Efficiency of I. C. Engines Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive	8.	0	12	18
Power Transmission Elements: Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive	J.			
9. Construction and Applications of Couplings, Clutches and Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive				
9. Brakes, Difference Between Clutch and Coupling, Types of Belt Drive and Gear Drive				
Drive and Gear Drive	9.			16
			60	100

List of Practical:

Sr.	Name of Practical	Hours
No.		
1.	Unit conversation Exercise and Chart preparation of building components	02
2.	Linear measurements	02
3.	Angular measurements	02
4.	Determine R. L of given point by Dumpy level. (Without Change Point)	02
5.	Determine R. L of given point by Dumpy level. (With Change Point)	02
6.	Presentation on various topics as in module about recent trends	04
7.	To understand construction and working of various types of boilers	04
8.	To understand construction and working of mountings	04
9.	To understand construction and working of accessories	04
10.	To understand construction and working 2 –stroke & 4 –stroke Petrol	02
	Engines	
11.	To understand construction and working 2 –stroke & 4 –stroke Diesel	02
	Engines	
	TOTAL	30

Text Book(s):

Title	Author(s)	Publication
Elements of Mechanical Engineering	S. B. Mathur,	Dhanpat Rai & Sons
	S. Domkundwar	Publications
Elements of Mechanical Engineering	Sadhu Singh	S. Chand Publications
Elements of Civil Engineering	Anurag A. Kandya	Charotar Publication
Surveying Vol. I & II	Dr. B. C. Punamia	Laxmi Publication

Reference Book(s):

Title	Author(s)	Publication
Thermal Engineering	R. K. Rajput	Laxmi Publications
Basic Mechanical Engineering	T.S. Rajan	Wiley Eastern Ltd., 1996.
Surveying and Levelling	N. N. Basak	Tata McGraw Hill
Surveying Vol. I	S. K. Duggal	Tata McGraw Hill
Surveying and Levelling	R. Subramanian	Oxford University
Building Construction and	G. S. Birdie and T. D. Ahuja	Dhanpat Rai Publishing
Construction Material		
Engineering Material	S.C. Rangwala	Charotar Publication

Web Material Link(s):

- http://nptel.ac.in/course.php
- http://nptel.ac.in/courses/105107157/
- http://nptel.ac.in/courses/105101087/
- http://nptel.ac.in/courses/105107121/

Course Evaluation:

Theory:

- Continuous evaluation consists of two tests each of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End Semester Examination will consist of 60 marks.

Practical:

- Continuous Evaluation consists of performance of practical which will be evaluated out of 10marks for each practical and average of the same will be converted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral performance of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SECV1040	BASICS OF CIVIL AND MECHANICAL ENGINEERING
CO 1	Apply the principles of basic mechanical engineering.
CO 2	Comprehend the importance of mechanical engineering equipment like ic engine and power transmission elements.
CO 3	Understand different structural loads, components, materials and equipment used in the construction of a building.
CO 4	Adapt various methods of area plotting and marking before starting the construction activity.

Mapping of CO with PO

SECV1040	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	PO12
CO 1	2	3	1	3	2	2						3
CO 2	2	3	1	3	2	2						3
CO 3	1	3	1	3	2	2						3
CO 4	1	3	1	3	2	2						3

Mapping of CO with PSO

SECV1040	PSO1	PSO2	PSO3
CO 1	2	2	2
CO 2	2	2	2
CO 3	3	2	2
CO 4	3	2	2

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Civil Engineering: An Overview	1, 2, 3, 4
2	Introduction to Surveying and Levelling	1, 2, 3, 4
3	Building Materials and Construction	1, 2, 3, 4
4	Construction Equipment	1, 2, 4, 5
5	Recent Trends in Civil Engineering	1, 2, 4, 5
6	Basic Concepts of Thermodynamics	1, 2, 4, 5, 6
7	Fuels and Energy	2,3,4
8	Basics of Steam Generators	3,4,5
9	Basics of I.C Engines	2,3,4
10	Power Transmission Elements	1, 2, 3, 4

Department of Science & Humanities

Course Code: SESH1250

Course Name: Microbiology & Biochemistry

Prerequisite Course(s): ---

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Exa	ıminatio	n Schem	ie (Mark	s)		
Theory	Practical	Tutorial	Credit	The	eory	Prac	tical	Tuto	orial	Total
				CE	ESE	CE	ESE	CE	ESE	
04	02		05	40	60	20	30			150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand methods of identification, cultivation and preservation of various microorganisms
- learn importance of sterilization in microbiology. and pharmaceutical industry
- learn sterility testing of pharmaceutical products.
- understand the catalytic role of enzymes, importance of enzyme inhibitors in design of new drugs, therapeutic and diagnostic applications of enzymes.

	Section-I					
Module	Content	Hours	Weightage			
No.			in %			
1.	Introduction to Microbiology					
	Introduction, history of microbiology, its branches, scope and					
	its importance. Introduction to Prokaryotes and Eukaryotes	10	15			
	Study of ultra-structure and morphological classification of					
	bacteria, nutritional requirements, raw materials used for					
	culture media. Study of different types of phase contrast					
	microscopy, dark field microscopy and electron microscopy					
2.	Sterilization					
	Study of principle, procedure, merits, demerits and					
	applications of Physical, chemical and mechanical method of	12	15			
	sterilization. Evaluation of the efficiency of sterilization					
	methods, Equipment employed in large scale sterilization.					
	Sterility indicators. Sterility testing of products (solids, liquids,					
	ophthalmic and other sterile products) according to IP.					

•			
3.	Pharmaceutical Microbiology		
	Types of spoilage, factors affecting the microbial spoilage of		
	pharmaceutical products, sources and types of microbial		
	contaminants, assessment of microbial contamination and		
	spoilage. Preservation of pharmaceutical products using	8	20
	antimicrobial agents, evaluation of microbial stability of		
	formulations. Growth of animal cells in culture, general		
	procedure for cell culture, Primary, established and		
	transformed cell cultures. Application of cell cultures in		
	pharmaceutical industry and research.		
	Section-II		
Module	Content	Hours	Weightage
No.			in %
4.	Carbohydrate, lipid and Amino acid metabolism Glycolysis		
	– Pathway, energetics and significance Citric acid cycle-		
	Pathway, energetics and significance, HMP shunt and its		
	significance; Glucose-6-Phosphate dehydrogenase (G6PD)		
	deficiency, Glycogen metabolism Pathways and glycogen		
	storage diseases (GSD) Gluconeogenesis- Pathway and its	10	15
	significance, Hormonal regulation of blood glucose level and		
	Diabetes mellitus. Electron transport chain (ETC) and its		
	mechanism. β-Oxidation of saturated fatty acid (Palmitic acid),		
	Formation and utilization of ketone bodies; Biological		
	significance of cholesterol and conversion of cholesterol into		
	bile acids, steroid hormone and vitamin D.		
5.	Biomolecules and Bioenergetics		
	Introduction, classification, chemical nature and biological role		
	of carbohydrate, lipids, nucleic acids, amino acids and proteins.		
	Concept of free energy, endergonic and exergonic reaction,		
	Relationship between free energy, enthalpy and entropy;	8	15
	Redox potential. Energy rich compounds; classification;	Ü	10
	biological significances of ATP and cyclic AMP		
6.	Enzymes		
	Introduction, properties, nomenclature and IUB classification of		
	enzymes Enzyme kinetics. Enzyme inhibitors with examples,		
	Regulation of enzymes: enzyme induction and repression,	6	10
	allosteric enzymesregulation.	Č	
7.	Nucleic acid metabolism and genetic information transfer		
, , , , , , , , , , , , , , , , , , ,	Biosynthesis of purine and pyrimidine nucleotides Catabolism		
	of purine nucleotides and Hyperuricemia and Gout Disease		10
	Organization of mammalian genome Structure of DNA and RNA		10
	and their functions DNA replication (semi conservative model)		
	Transcription or RNA synthesis Genetic code, Translation or		
	Protein synthesis and inhibitor.		
	TOTAL	60	100
	IUIAL	υυ	100

List of Practical/Tutorial:

Sr.	Name of Practical	Hours		
No				
1.	Introduction and study of different equipment and processing, e.g., B.O.D.	03		
	incubator, laminar flow, aseptic hood, autoclave, hot air sterilizer, deep freezer,			
	refrigerator, microscopes used in experimental microbiology.			
2.	Sterilization of glassware, preparation and sterilization of media.	03		
3.	Sterility testing of pharmaceuticals	03		
4.	Staining methods- Simple, Grams staining and acid-fast staining	03		
	(Demonstration with practical).			
5.	Bacteriological analysis of water	03		
6.	Qualitative analysis of carbohydrates (Glucose, Fructose, Lactose, Maltose,			
	Sucrose and starch)			
7.	Identification tests for Proteins (albumin and Casein)			
8.	Determination of blood creatinine			
9.	Determination of blood sugar			
10.	Determination of serum total cholesterol			
	TOTAL	30		

Text Book:

Title	Author/s	Publication
Principles of Biochemistry	Lehninger	WH Freeman
Harper's Biochemistry	Robert K. Murry, Daryl K. Granner and Victor W. Rodwell.	Wiley India Edition
Pharmaceutical Microbiology	W.B. Hugo and A.D. Russel	Blackwell Scientific
		publications, Oxford

Reference Book:

Title	Author/s	Publication
Industrial Microbiology, 4th edition	Prescott and Dunn.	CBS Publishers &
		Distributors, Delhi
Microbiology	Pelczar, Chan Kreig Rodwell.	Tata McGraw Hill
Cooper and Gunn's: Tutorial Pharmacy	Cooper and Gunn	CBS Publisher and
		Distribution.

Course Evaluation:

Theory:

- Continuous Evaluation consists of two internal exams which carry 30 marks each and the final evaluate will be counted with average of 30 Marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by Course Coordinator.
- End semester examination consists of 60 marks

Practical:

- Continuous Evaluation consist of performance based on practical which should be evaluated out of 10 marks each in the next turn and average of the same will be converted to 10 marks.
- Internal viva component carries 10 marks of evaluation.
- Practical performance/quiz/drawing/test consists of 15 marks evaluation during end semesterexam.
- Viva/Oral performance consists of 15 marks evaluation during end semester examination.

Course Outcome(s):

After the completion of the course, the students will be able to:

SESH1250	MICROBIOLOGY & BIOCHEMISTRY
CO 1	Knowledge of sterilize consumables to be used in microbial experiments.
CO 2	Perform sterility testing and microbial assay of pharmaceutical products.
CO 3	Describe applications of equipment used in microbiology laboratory.
CO 4	Identify biochemical aspects of cell metabolism and enzyme.
CO 5	Summarize metabolic pathway of important biomolecules.

Mapping of CO with PO

SESH1250	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	2	2	1	1			2			3		2
CO 2	2	3	1	2			2			3		2
CO 3	2	3	1	3			2			3		3
CO 4	2	3	3	3			2			3		3
CO 5	2	3	3	3			2			3		3

Mapping of CO with PSO

SESH1250	PSO1	PSO2	PSO3
CO 1		3	1
CO 2		3	1
CO 3	2	3	1
CO 4	2	3	1
CO 5	2	3	1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Microbiology	1,2
2	Sterilization	3,4
3	Pharmaceutical Microbiology	1,2
4	Carbohydrate, lipid and Amino acid metabolism	2,4,5
5	Biomolecules and Bioenergetics	1,2
6	Enzymes	2,3,4
7	Nucleic acid metabolism and genetic information	1,2,5

Department of Computer Engineering

Course Code: SECE1010

Course Name: Basics of Computer and Programming

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
				CE	ESE	CE	ESE	CE	ESE	
03	02		04	40	60	20	30			150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand basic components of computer system.
- identify appropriate approach to computational problems.
- develop logic building and problem-solving skill.

	Section I		
Module	Content	Hours	Weightage
No.			in %
	Introduction to Computer and its Architecture:		
	Introduction and Characteristics, Generation, Classification,		
1.	Applications, Central Processing Unit, Communication between	03	10
	Various Units, Processor Speed, Various Input and Output Devices.		
	Memory and Operating Systems:		
	Introduction to Memory, Memory Hierarchy, Primary Memory and		
	its Type, Secondary Memory, Classification of Secondary Memory,		
2.	Various Secondary Storage Devices and their Functioning, their	06	15
	Merits and Demerits, Evolution of Operating System, Types and		
	Functions of Operating Systems,		
	Recent Advances in Computer:		
3.	Introduction to Emerging Areas like Artificial Intelligence, IoT		
	tools, Data Science, Sensors, 3D Printing, Automization in the field	05	10
	of Civil, Mechanical and Chemical.		
	Computer Programming Language:		
	Introduction to different types of Programming Languages,		
4.	Flowcharts and Algorithms. Introduction to C Programming	0.0	45
	Language, Features of C, Structure of C Program, Development of	1 08 1	15
	Program, Types of Errors, Debugging and Tracing Execution of		
	Program.		

	Section II							
Module	Content	Hours	Weightage					
No.			in %					
	Constants, Variables and data Types:							
	Character Set, C tokens, Keyword, Constants and Variables, Data							
5.	Types - Declaration and Initialization, User define type Declarations	05	10					
	Typedef, Enum, Basic Input and Output Operations, Symbolic							
	Constants							
	Operators and Expression and Managing I/O operations:							
	Introduction to Operators and its Types, Evaluation of Expressions,							
	Precedence of Arithmetic Operators, Type Conversions							
6.	Expressions, Operator Precedence and	07	16					
0.	Associativity. Managing Input and Output, Reading a Character,	0,	10					
	Writing a Character, Formatted Input, Formatted Output.							
	Conditional statement and branching:							
	Decision Making & Branching: Decision Making with If & If Else							
	Statements, If - Else Statements (Nested Ladder), The Switch & go -							
7.	to Statements, The Ternary (?:) Operator Looping: The While	06	12					
	Statement, The Break Statement & The Do. While Loop, The FOR							
	Loop, Jump Within Loops - Programs.							
	Arrays and Strings:							
	Introduction to Array, One Dimensional Array, Two Dimensional							
8.	Arrays, Declaring and Initializing String Variables, Arithmetic	05	12					
	Operations on Characters, Putting Strings Together, Comparison of							
	Two Strings, Basic String Handling Functions							
	TOTAL	45	100					

List of Practical:

Sr. No	Name of Practical	Hours
1.	Introduction to Basic Command	04
2.	Word Processing, Spreadsheets and Presentation Exercises	06
3.	Introduction to Octave Environment	04
4.	Implementation in C for conditional statement and branching	06
	Implementation of if, ifelse, nested ifelse and switch statementsImplementation	
	of while loop, dowhile loop and for loop	
5.	Implementation of 1-D and 2-D array	06
6.	Implementation of in-built string functions, application programs of array	04
	and strings	
	TOTAL	30

Text Book(s):

Title	Author(s)	Publication
Programming in ANSI C	E. Balagurusamy	Tata McGraw Hill
Introduction to Computer Science	ITL Education Solutions	Pearson Education
	Limited	

Reference Book(s):

Title	Author(s)	Publication
Programming in C	Ashok Kamthane	Pearson
Let Us C	Yashavant P. Kanetkar	Tata McGraw Hill
Introduction to C Programming	Reema Thareja	Oxford Higher Education
Programming with C	Byron Gottfried	Tata McGraw Hill

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests of 30 marks and 1 hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by CourseCoordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of the performance of practical, which will be evaluated out of 10 per each practical. At the end of the semester, the average of the entire practical will beconverted to 10 marks.
- Internal viva consists of 10 marks.
- Practical performance/quiz/test consists of 15 marks during End Semester Examination.
- Viva/Oral performance consists of 15 marks during End Semester Examination.

Course Outcome(s):

After the completion of the course, the students will be able to:

SECE1010	BASICS OF COMPUTER PROGRAMMING
CO 1	Observe the different types of operating systems and its functionalities.
CO 2	Explore new emerging area in computer field.
CO 3	Apply basic principles of imperative and structural programming to solve complex
	problems.
CO 4	Classify the types of errors occur while running the program.

Mapping of CO with PO

SECE1010	PO1	P02	P03	PO4	P05	P06	P07	P08	P09	P010	P011	PO12
CO 1		1										
CO 2		1		2	1						2	
CO 3		3	2	1								
CO 4		1	1	1								

Mapping of CO with PSO

SECE1010	PSO1	PSO2	PSO3
CO 1	3	3	1
CO 2	3	1	3
CO 3	3	3	1
CO 4	1	3	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Computer and its Architecture	1,2
2	Memory and Operating Systems	1,3
3	Recent Advances in Computer	1,2
4	Computer Programming Language	2,3,4
5	Constants, Variables and data Types	3,4,5,6
6	Operators and Expression and Managing I/O	
	operations	2,3,4
7	Conditional statement and branching	1,4,5,6
8	Arrays and Strings	2,4,5

SECOND YEAR B. TECH.

			P P SAVANI UNIVERSITY												
			SCI	HOOL OF I	EEENGINEE	RING									
		TEACHING & EXAMINATION SCHEME FOR B.TECH. PHARMACEUTICAL ENGINEERING PROGRAMME AY: 2022-23													
	C	Course Name			Teachi	ng Schem	ie	Examination Schemo					eme		
Sem	Course Code	Gourse warne			Contact F	Iours		Credit	The	eory	Prac	ctical	Tuto	rial	Total
	douc		Offered by	Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	SEPE2010	Pharmaceutical Chemistry	PE	3	2	0	5	4	40	60	20	30	0	0	150
	SEPE2020	Physical Pharmaceutics	PE	3	0	0	3	3	40	60	0	0	0	0	100
	SEPE2910	Industry Aligned Learning-I	PE	1	0	0	1	1	100	0	0	0	0	0	100
	SECH2010	Chemical Process	СН	3	0	1	4	4	40	60	0	0	50	0	150
	SECH2020	Mechanical Operations	СН	3	2	0	5	4	40	60	20	30	0	0	150
3	SECH2040	Chemical Engineering	СН	2	0	0	2	2	40	60	0	0	0	0	100
	CFLS1020	Global communication skills	CFLS	2	0	0	2	2	40	60	0	0		0	100
	SEPE2930	Industrial Exposure	PE		2		0	2	0	0	100	0	0	0	100
			Total				22	22							950
	SEPE2040	General Pharmacology-I	PE	3	0	0	3	3	40	60	0	0	0	0	100
	SEPE2050	Molecular Biology & Genetic	PE	4	2	0	6	5	40	60	20	30	0	0	150
	SEPE2920	Industry Aligned Learning-II	PE	2	0	0	2	2	100	0	0	0	0	0	100
	SECH2050	Fluid Flow operations	СН	3	2	0	5	4	40	60	20	30	0	0	150
4	SECH2061	Physical, Inorganic &	СН	3	2	0	5	4	40	60	20	30	0	0	150
	SECH2070	Chemical Engineering Thermodynamics -I	СН	3	0	2	5	5	40	60	0	0	50	0	150
	CFLS3010	Foreign Language-I	CFLS	2	0	0	2	2	40	60	0	0	0	0	100
	SEPD3040	Integrated Personality	SEPD	2	0	0	2	2	100	0	0	0	0	0	100

Department of Pharmaceutical Engineering

Course Code: SEPE2010

Course Name: Pharmaceutical Chemistry

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory Practica	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
Theory	Practical	Tutoriai		CE	ESE	CE	ESE	CE	ESE	Total
03	02		04	40	60	20	30			150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Basic knowledge of reactive intermediates.
- The core concepts of organic chemistry i.e. resonance, hyper conjugation, inductive effect etc.
- Knowledge of the increasingly important role played by organic and transition metals reagents

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Principles of test for purity in pharmaceutical substances Identification and characterisation of impurities in pharmaceutical substances, Limit tests: Definition, importance, general procedure for limit test for chlorides, sulphates, iron, arsenic, heavy metals, lead and modifications with suitable examples.	07	15
2.	Reactive Intermediates & Polar Effects Concepts of aromaticity- Huckell's Rule, benzenoid (Naphthalene) and non-benzenoid (Azulene) aromatic compounds. Definition, generation, stability, structure and reactivity of free radicals, carbocations, carbanions, carbenes. Inductive effect, electrometric effect, resonance effect, hyper conjugation, steric inhibition of resonance- examples. The influence of these effects on the acidity and basicity of organic compounds.	10	20
3.	Reagents in Organic Synthesis Synthesis and application of Grignard reagent, LDA, DIBAL, Zn-Hg/HCl, DCC.	05	15
Module	Section II Content	Hours	Weightage
No.	dontent	110013	in %
4.	Mechanisms of Organic Reactions	08	15

	Mechanism of alkyl and aryl halides, mechanism of aromatic		
	electrophilic and nucleophilic substitution - alcohols, aldehydes,		
	ketones, carboxylic acids. Organic named reactions Friedel-		
	Craft reaction, Beckmann rearrangement, Aldol condensation,		
	Benzoin, Hofmann rearrangement, Fries rearrangement.		
	Stereochemistry		
	Introduction, stereoisomerism, geometrical isomerism,E-Z		
5.	system of nomenclature, Optical isomerism, Symmetry and	08	20
J.	chirality. Optical isomerism in lactic acid and tartaric acid,	00	20
	Enantiomers, diastereomers, conformational analysis of 1,2		
	dichloride Ethane and Cyclohexane.		
	Important inorganic gases		
6.	Oxygen, Nitrogen, Nitrous Oxide, carbon dioxide, Helium,	07	15
	Ammonia and their compounds as per I.P.		
	Total	45	100

List of Experiments

S.no	Experiment list	Hours						
1	Identification of organic compounds based on detection of elements.							
2	Determination of physical constants, group solubility, functional groups and							
	preparation of derivatives.							
3	Estimation of functional groups like carboxyl, hydroxyl, amino, acetyl, carbonyl,	04						
	unsaturation, ester group and amino nitrogen.							
4	Determination of viscosity of a liquid using Ostwald Viscometer							
5	Determination of mutual solubility curve of phenol and water.							
6	Determination of end point in a typical titration by Conductometric method.	04						
7	Determination of velocity constant of a first order reaction.							
8	Determination of end point in a typical titration by Conductometric method.	04						
	TOTAL	30						

Text Book(s):

Title	Author/s	Publication
Practical Pharmaceutical Chemistry	Beckett, A.H. and	CBS Publications, 1997.
	Stenlake, J.B.	
Pharmaceutical Chemistry" Organic &	Chatwal, G.R.	Himalaya
Inorganic	Cliatwai, G.K.	Publications.

Reference Book(s):

Title	Author/s	Publication
Pharmaceutical Chemistry: Therapeutic		
aspects of Biomacromolecules	Blanders, Christie M.	John Wiley & Sons
Textbook of Pharmaceutical Chemistry"		
Part-I Inorganic, Part II Organic	Mohammed Ali	CBS Publications, 1997.
Chemistry		

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE2010	PHARMACEUTICAL CHEMISTRY
CO 1	Interpret mechanism of attack of electrophiles and nucleophiles.
CO 2	Acquire the knowledge of optical isomerism, geometrical isomerism and conformational
	isomerism.
CO 3	Identification of drugs containing various heterocyclic moieties.
CO 4	knowledge in limit tests of impurities in pharmaceutical substances.
CO 5	Ability to prepare pharmaceutical aids with knowledge of inorganic gases and inorganic
	compounds.

Mapping of CO with PO

SEPE2010	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2											
CO 2	1						1			1		1
CO 3	1	1					2					1
CO 4	1	2		2			2					
CO 5				1			2			1	3	1

Mapping of CO with PSO

SEPE2010	PSO1	PSO2	PSO3
CO 1	1		1
CO 2	2		1
CO 3	3	3	2
CO 4	1		1
CO 5	1		2

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Principles of test for purity in pharmaceutical	2,4,5
	substances	
2	Reactive Intermediates & Polar Effects	1,2
3	Reagents in Organic Synthesis	1,2,5
4	Mechanisms of Organic Reactions	1,2,4,5
5	Stereochemistry	1,2
6	Important inorganic gases	1,2

Department of Pharmaceutical Engineering

Course Code: SEPE2020

Course Name: Physical Pharmaceuticals

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Exami	nation Sc	heme (N	Iarks)				
Theory Practical	ical Tutorial Cr		Credit Theory		Practical		Tutorial		Total	
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03			03	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand various physicochemical properties of drug molecules in the designing.
- Know the principles of chemical kinetics & to use them in assigning expiry date.

	Section I								
Module	Content	Hours	Weightage						
No.			in %						
1.	Micromeritics and powder rheology Particle size and distribution, average particle size, number and weight distribution, particle number, methods for determining particle volume, optical microscopy, sieving, sedimentation, measurement of particle shape, specific surface, methods for determining surface area, permeability, adsorption, derived properties of powders, porosity, packing arrangement, densities, bulkiness and flow properties.	08	15						
2.	Surface and Interfacial Phenomenon Liquid interface, surface and interfacial tension, surface free energy, measurement of surface and interfacial tensions, free energy, spreading coefficient, adsorption at liquid interfaces, surface active agents, HLB classification, solubilization, detergency, adsorption at solid interface, solid gas and solid-liquid interface, complex films, electrical properties of interface.	07	20						
3.	Viscosity and Rheology Newtonian system, Law of flow, kinematic viscosity, effect of temperature, non-Newtonian systems, pseudoplastic, dilatant, plastic, thixotropy, thixotropy in formulation, determination of viscosity: capillary, falling ball, rotational viscometers. Section II	07	15						
Module	Content	Hours	Weightage						
No.	Content	110015	in %						

	Dispersion Systems		
4.	Colloidal dispersions: Definition, types, properties of colloids, protective colloids, applications of colloids in pharmacy. Suspensions and Emulsions: Interfacial properties of suspended particles, settling in suspensions, theory of sedimentation, effect of Brownian movement, sedimentation of flocculated particles, sedimentation parameters, wetting of particles, controlled flocculation, flocculation in structured vehicle, rheological considerations, emulsions; types, theories, physical stability.	09	20
5.	Diffusion and Dissolution Definitions, Steady state diffusion, Procedures and apparatus, Dissolution, Drug release. Complexation and protein binding Metal complexes, organic molecular complexes, inclusion compounds, methods of analysis, protein binding, complexation and drug action, crystalline structures of complexes and thermodynamic treatment of stability constants.	07	10
6.	Kinetics and Drug Stability General considerations and concepts, half-life determination, Influence of temperature, light, catalytic species, solvent and other factors, Accelerated stability study, expiration dating.	07	20
	TOTAL	45	100

Text Book(s):

Title				Author/s	Publication	ļ			
Martin's	Physical	Pharmacy	and	Sinko, Patrick J.	Lippincott	Williams	&	Wilkins	
Pharmaceutical Sciences				Publishing, 2	2006				
Cooper and Gunn's Tutorial Pharmacy			Carter, S.J.	6th Edition.	6th Edition. CBS Publishers, 1986.				

Reference Book(s):

Title	Author/s	Publication
The Physicochemical Basis of	Monihan, Humphery	
Pharmaceuticals	and Abina Gean	Oxford University Press, 2009

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE2020	PHYSICAL PHARMACEUTICALS
CO 1	Review various physicochemical properties of drug molecules in the designing the
	dosage form.
CO 2	Know the principles of chemical kinetics & to use them in assigning expiry date
	for formulation.
CO 3	Acquire working knowledge and understanding the concepts of colloids and its

	applicati	ons.									
CO 4	Learn th	he steps	involved	in	the	preparation	of	pharmaceutical	buffers	and	its
	importar	nce.									

Mapping of CO with PO

SEPE2020	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	1	2	1		1				1	1		1
CO 2	1	1	1		2				1	1		
CO 3	1											
CO 4	1	1			3				1	1		1

Mapping of CO with PSO

SEPE2020	PSO1	PSO2	PSO3
CO 1	3	1	
CO 2		2	1
CO 3	1	1	
CO 4	3		

1: Remember	2: Understand	3: Apply		
4: Analyze	5: Evaluate	6: Create		

Module No	Content	RBT Level
1	Micromeritics and powder rheology	1,2,3
2	Surface and interfacial phenomenon	1,2
3	Viscosity and rheology	1,2,4,5
4	Dispersion system	1,2,5
5	Diffusion and dissolution	1,2,4
6	Kinetics and drug stability	1,2,5

Department of Pharmaceutical Engineering

Course Code: SEPE2910

Course Name: Industry aligned learning -I

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching S	Scheme (Hours/Week)			Examination Scheme (Marks)						
Theory	Practical	Tutorial	Credit	Theory	7	Practical		Tutoria	al	Total
Theory	rileory	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
01			01	100						100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• To give idea to the students related to good manufacturing practices for manufacturing documentations, laboratory practices and engineering practices

Course Content:

Section I	Section I									
Module	Content	Hours	Weightage							
No.			in %							
1.	Engineer's Role in Pharmaceutical Industry	05	50							
Section II										
Module	Content	Hours	Weightage							
No.			in %							
2.	Good Practices for Pharmaceutical Industry like GXP: GMP/	10	50							
	GDP / GLP / GEP									
	TOTAL	15	100							

Reference Book(s):

Title	Author/s	Publication		
ICH Guideline Q10	Global Society	Indian Press		

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE2910	INDUSTRY ALIGNED LEARNING-I
CO 1	Generate competency in accordance with current regulatory guidelines related to GMP
CO 2	Relate the basic concepts and fundamentals of pharmaceutical industry

	CO 3	Implement various aspects of GDP
CO 4 Illustrate the concepts of GLP and GD		Illustrate the concepts of GLP and GDP

Mapping of CO with PO

SEPE2910	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	1				1	3	2	1	2			1
CO 2	1				1	3	2		2			1
CO 3	1				1		1	1	1			
CO 4	1				1		1	1	1			

Mapping of CO with PSO

SEPE2910	PSO1	PSO2	PSO3
CO 1	3	1	
CO 2	3	3	1
CO 3	3	2	
CO 4	1	1	

1: Remember	2: Understand	3: Apply		
4: Analyze	5: Evaluate	6: Create		

Module No	Content	RBT Level
1	Engineer's Role in Pharmaceutical Industry	1,2,3
2	Good Practices for Pharmaceutical Industry	1,2,3

Department of Chemical Engineering

Course Code: SECH2010

Course Name: Chemical Process Calculations

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Examination Scheme (Marks)					
				The	ory	Practical		Tutorial		
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03		01	04	40	60			50		150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- know the conventions and the methods of chemical process.
- Develop the basic acumen for the Chemical Engineering and its calculations.
- know how to carry out various process calculations.
- improve their analytical skills for various chemical processes.
- improve their technical ability in the form of numerical analysis of chemical problems.

	Section I							
Module			Weightage					
No.	Content	Hours	in %					
	Introduction							
	Chemical Engineering and Chemical Industry, Steady state and							
1.	unsteady state processes, Unit Operations, Unit Processes and	02	03					
	Process Flow Diagrams.							
	Graphics and Basics of Chemical Processes							
	Graphical methods of curve fittings, Method of least squares,							
	Solution of cubic equations by trial-and-error method, Conversion							
2.	of units, Dimensional analysis, Properties of gas, liquid and solid,	03	07					
	Equations of state.							
	Basic Calculations							
	State properties: Molecular weight, Compositions, Density, Vapor							
	pressure etc for gas, liquid and solid systems, Thermal properties:							
	Heat capacity, Sensible heat, Latent heat, Heat of reaction, Heat of							
	solution, Enthalpy calculations etc. for gas, liquid and solid systems,							
	Techniques of problem Solution: Analytical, Graphical and							
3.	Numerical, Gas laws and phase equilibria, Humidity, Saturation and	09	20					
	Crystallization.							

4.	Material Balances Materials balance: Concepts of limiting and excess reactants, Batch, Stage-wise, Continuous and recycle operations, Material balance of systems involving mixing, extraction, distillation, crystallization, chemical reaction and recycle processes, Material balance equations based on conservation principle, Material balances for non-reactive processes (Unit Operations), Material balances for reactive processes.	08	20
	Section II		
Module			Weightage
No	Content	Hours	in %
	Vapour pressure		
	Vapour pressure plots, Vapour pressure of immiscible liquids and		
	vapour pressure of solutions; Humidity and saturation humidity		
	chart, Super saturation, Distribution of a solute between immiscible		
5.	and partially miscible liquids, Solubility of gases.	04	05
	Thermo physics and Energy Balances		
	Energy balances for closed and open systems based on energy		
	conservation principle, Energy balances for non-reactive processes		
	(Unit Operations), Energy balances for reactive processes, Coupled		
	material and energy balances for single unit process, Heats of		
	formation, combustion, reaction, solution, dilution, Effect of		
	temperature on heat of reaction, Energy balance of systems without		
6.	and with chemical reactions, Heat capacity calculations, Enthalpy	12	25
	changes of reactions, dissolution and laws of thermochemistry,		
	Effect of pressure and temperature on heat of reactions.		
	Multiple Unit Processes		
	Introduction to processes with multiple Units; Material balances on		
	processes with recycle, Purge, and bypass, Introduction to DOF		
	analysis and solution strategy for multi- unit process, Degrees of		
7.	freedom in steady-state processes, Simultaneous material and	07	20
	energy balance problems using flow sheeting codes, Unsteady state		
	material and energy balances.		
	TOTAL	45	100

Text Book(s):

Title	Author/s	Publication
Stoichiometry	Bhatt, B.I. and Vora, S.M.	Tata McGraw-Hill Publishing Co., New Delhi.
Chemical Process	Hougen, O.A., Watson.	John Wiley & Sons, (CBS Publishers &
Principles Part-I	K.M. and Ragatz, R.A.	Distributor, New Delhi).

Reference Book(s):

Title	Author/s	Publication
Basic Principles and Calculation in		
Chemical Engineering	Himmelblau, D.M.	Prentice Hall, Inc.
Introduction to Chemical	S K Ghoshal, S K	Tata McGraw-Hill Publishing Co.
Engineering	Sanyal and S Dutta	Ltd., New Delhi.

	Whitwell J.C. &Jone	
Conservation of Mass and Energy	R.K.	McGraw-Hill, Singapore, 1973

Web Material Link(s):

• http://nptel.ac.in/courses/103103039/23

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Tutorial:

- Continuous Evaluation consists of performance of tutorial which should be evaluated out of 10 Marks for each tutorial and average of the same will be converted to 30 marks.
- Numerical Test consists of 10 marks.
- Internal Viva consists of 10 marks.

Course Outcome(s):

After the completion of the course, the students will be able to:

SECH2010	CHEMICAL PROCESS CALCULATIONS
CO 1	Apply the concept of dimension and unit conversion to check dimensional consistency of
	balanced equations and understand the specific terms used in process calculation.
CO 2	Compute material balance problems on distillation, absorption, etc without chemical
	reactions.
CO 3	Compute material balance problems on batch and continuous process with chemical
	reactions.
CO 4	Solve energy balance problems on heat exchanger, evaporator, etc of various unit
	processes.
CO 5	Solve problems related to ideal and real gas and liquid solutions.

Mapping of CO with PO

- 11 8 -												
SECH2010	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	PO12
CO 1	2	1										1
CO 2		1			1				1	1		1
CO 3				1					1	1		1
CO 4			1		1					1		1
CO 5	2	1		1	1					1		1

Mapping of CO with PSO

SECH2010	PSO1	PSO2	PSO3
CO 1		1	
CO 2	1	1	
CO 3		1	
CO 4	1	1	
CO 5	1	1	

1: Remember	2: Understand	3: Apply		
4: Analyze	5: Evaluate	6: Create		

Module No	Content	RBT Level
1	Introduction	1,2,5
2	Graphics and Basics of Chemical Processes	1,2,3,4,5
3	Basic Calculations	3,4,5
4	Material Balances	3,4,5
5	Vapour pressure	1,2,3,4,5
6	Thermo physics and Energy Balances	3,4,5
7	Multiple Unit Processes	3,4,5

Department of Chemical Engineering

Course Code: SECH2020

Course Name: Mechanical Operations

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Teaching Scheme (Hours/Week) Examination Scheme (Marks)						
				Theory Practical			Tuto	rial		
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02		04	40	60	20	30			150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- Understand many basic principles of Chemical Engineering operations such as Size Reduction, Filtration, Sedimentation, Mixing and Agitation etc. and their mathematical co-relation.
- Understand basic principles of particle preparation and their characterization.
- Study various methods for storage of solids and conveyors available for their transportation.
- Understand the performance of different equipment for separation of solids and size reduction.

	Section I							
Module			Weightage					
No.	Content	Hours	in %					
	Properties of particulate solid							
	Introduction to particle technology, Characterization of solid							
1.	particles, particle size measurement techniques, Mixed particles,	02	05					
	specific surface of mixture, Particle population.							
	Size reduction and enlargement							
	Types of equipment and their studies, Principles of comminution,							
	Laws of crushing and grinding, Closed and open circuit grinding,							
	power requirements, Energy and power required for comminution,							
	Industrial processes for particle size enlargement, size							
	enlargement equipment comminution, Broad classification, Primary							
	breaking operations, Intermediate crushing by crushers, cone, roll							
2.	and impact crushers, Ball and fumbling mills—fine grinding,	10	20					
	Determination of power consumption.							
	Properties of masses of solids							
	Storage of solids: Angle of repose, bulk storage, storage in bins and							
3.	silos.	02	08					

	Conveying of colide		
	Conveying of solids Codes for characterization of solids, screw conveyers, belt		
	1		
	conveyers, bucket elevators, pneumatic conveying of solids, Design of conveyor belts, Mechanical and pneumatic conveying equipment		
4.	and power consumption.	03	07
4.	Screening - equipment and efficiency	03	07
	Screen analysis, Method of reporting screen analysis, Capacity and		
	effectiveness of screens, Screen analysis, sizing curves, industrial		
	sizing, screening revolving and vibrating screens, Screen efficiency		
5.	and capacity, Classification: Laws, wet and dry methods, Types of	05	10
J.	classifiers—stationary, mechanical, centrifugal and hydraulic.	03	10
	Section II		
Module	Section ii		Weightage
No.	Content	Hours	Weightage in %
NO.	Filtration	Hours	111 %
	Flow through porous media, Theories of filtration - Principles of		
	filtration, constant rate and constant pressure filtration, Optimum		
	cycle, compressible cakes and filter aids, constant pressure,		
	constant rate filtration, compressible and incompressible cakes,		
	cake resistance, filter media resistance, filter media, filter aids,		
6.	filtration equipment (batch, continuous), selection criteria,	06	15
0.	washing of filter cakes, filtration by continuous vacuum and	00	13
	pressure filters.		
	Gravity setting and sedimentation		
	Gravity clarifiers, sorting clarifiers, Batch sedimentation, rate of		
	sedimentation, Thickening process and sedimentation, Design of		
	thickeners and clarifiers free and hindered setting, Centrifugal		
7.	sedimentation: Principles of centrifugal sedimentation, Solid gas	05	10
, ,	separation, liquid solid separation, Centrifugation.	0.0	10
	Mixing		
	Mixing equipment and characteristics, power consumption and		
	efficiency, mixing of powders and pastes: Mixers for cohesive and		
	non-cohesive solids, Mixing Index Agitation and mixing of liquids:		
8.	Basic stirred tank design, Types of impellers, flow patterns, power	06	10
	consumption and scale up.		
	Separators		
	Cyclones and electrostatic precipitator, Flotation, Thickeners,		
	Flotation, Physico-chemical principles, Chemistry of flotation		
	reagents and their functions, Flotation processes, Froth flotation		
	machines, Concentration of copper, lead and zinc ores by flotation,		
9.	Flotation of non-sulphide ores of copper and lead, dolomite,	06	15
	fluorspar, gypsum, phosphates, manganese, silica, sillimanite,		
	graphite and coal, Electrical and magnetic		
	· · · · · · · · · · · · · · · · · · ·	1	1

concentration, Electrostatic and magnetic separations, dry and wet		
type separators.		
TOTAL	45	100

List of Experiment:

Sr No	Experiment List								
1.	Determination of particle size by sieve analysis.	02							
2.	Determination of the optimum speed and critical speed of a ball mill.								
3.	Measurement of different bulk properties of powder samples.	02							
	To study powder compaction behavior using different powder								
4.	compaction models.	02							
5.	Study of particle size reduction by Roll crusher and Jaw crusher								
6.	Characterization of powder flow ability by Angle of Repose.								
7.	Obtaining the collection efficiency of cyclone								
8.	Obtaining settling rates of slurry as function of solid concentration								
9.	Power consumption in Agitated vessels								
10.	Study of froth flotation process								
11.	Study of Plate and Frame filter place								
12.	Study of Centrifugation process	02							
	TOTAL	30							

Text Book(s):

	T	
Title	Author/s	Publication
Unit Operations of Chemical	W L McCabe and J	McGraw-Hill International
Engineering	C Smith	
Principles of Mineral Dressing	A M Gaudin	Tata McGraw-Hill Publishing
		Co. Ltd., New Delhi
Elements of Ore Dressing	A F Taggart	John Wiley and Sons, New

Reference Book(s):

Title	Author/s	Publication
	J.M. Coulson & J.F.	Elsevier, 2003 or
Chemical Engineering Vol II, 6th Ed.	Richardson	Pergamon Press
Unit Operations	G.G. Brown Ed.	John Wiley & Sons, 1950
Transport Processes and Separation		
Process Principles' 4th Ed,	C.G. Geankopolis	Prentice Hall India, 2003

Web Material Link(s):

http://nptel.ac.in/syllabus/103107091

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks

Practical:

- Continuous Evaluation consists of performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

SECH2020	MECHANICAL OPERATIONS
CO 1	Apply and distinguish fluid particle systems and equipment.
CO 2	Select suitable size reduction equipment for solid solid separation method and conveying
	system.
CO 3	Describe and analyze agitation and mixing and their equipment.
CO 4	Classify solid liquid gas separation equipment. liquid gas separation equipment.

Mapping of CO with PO

SECH2020	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	2	2	2	2	1		1			1	1	
CO 2	3	2	2	2	1		1			1	1	
CO 3	2	2	2	2	1		1			1	1	
CO 4	2	2	2	2	1		1			1	1	

Mapping of CO with PSO

SECH2020	PSO1	PSO2	PSO3
CO 1	2	2	
CO 2	2	2	
CO 3	2	2	
CO 4	2	2	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Properties of particulate solid	1
2	Size reduction and enlargement	1,2,3,4
3	Properties of masses of solids	1,2,4
4	Conveying of solids	1,3,4

5	Screening - equipment and efficiency	2,4,5
6	Filtration	2,4,5
7	Gravity setting and sedimentation	2,4,5
8	Mixing	2,4,5
9	Separators	2,4,5

Department of Chemical Engineering

Course Code: SECH2040

Course Name: Chemical Engineering Materials & Metallurgy

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exam	ination S	Scheme ((Marks)		
				The	ory	Pract	ical	Tuto	rial	
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02			02	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- identify the different chemicals and related materials and their properties.
- understand the microstructures, crystallography, defects, and phase diagrams of different materials.
- help the students to understand the process involved in chemical and mechanical testing of materials under certain conditions.
- make them aware about the advancements in the area of materials used in chemical and allied industries.

	Section I		
Module			Weightage
No.	Content	Hours	in %
	Introduction to Engineering Materials		
	Classification of engineering materials, Engineering requirements from materials, Basics of crystals and their		
1.	correlated properties, Factors that govern material selection for engineering applications, Micro and macro examination.	02	10
	Structure and Imperfections in Crystals		
	Introduction, Unit cells and their lattice structure, coordination		
	number, crystal structure of metals, Atomic packing factor,		
	Crystallographic planes and directions, Polymorphism and		
2.	Allotropy, Diffusion in solids, Imperfection in crystals and their	04	10
	types.		
	Ferrous metals and its Alloys		
	Iron and their alloys - Aluminium, copper, Zinc, lead, Nickel and		
3.	their alloys with reference to the application in chemical		15
	industries. Phase Diagrams and Phase	06	

Transformation, TTT and CCT Diagrams. Iron-IronCarbide and Iron-carbon diagrams, Overview of different types of irons -		
and Iron-carbon diagrams, Overview of different types of irons -		
5 ,		
Wrought iron Pig iron, Cast iron, White Cast Iron, Grey Cast Iron,		
Malleable Cast Iron and their properties and characteristics,		
deformation of metals, Types of steel like Chromium, Manganese,		
Molybdenum and Manganese steels.		
Metals: their behaviors and properties		
Solidification of metals and an alloy, Nucleation and Growth,		
Solidification defects, Effects of Structure on Mechanical		
Properties, Methods to control the grain structure resulting from		
solidification, Cooling curve of pure metal and alloy,		
Deformation in polycrystalline materials, Mechanical testing of		
4. materials (destructive & non-destructive) testing methods. 0)3	15
Section II		
Module		Weightage
No. Content Ho	ours	in %
Polymers, Ceramics, and Composites:		
Methods of fabrication of materials like timber, plastics, rubber,		
fibres and other polymeric materials, Ceramics, Ceramic Matrix,		
Crystalline and non-crystalline ceramic systems, Properties of		
ceramic materials, Glass and refractories, Cement refractories,		
Alumina, Zirconia, Silicon Carbide, Sialons, Reaction Bonded		
Silicon Nitride, Processing Composite materials, Fibre reinforced		
plastic (FRP), Organic materials like wood, plastics, and rubber,		
Advanced materials like Biomaterials and composites with		
special reference to the applications in chemical Industries,		
Polymers - Definition, Classification & characteristics, Types of		
	0	30
	LU	30
polymer Conductive polymer, bio-route prepared nano polymer,		
Blended polymer, self-cleaning polymer surfaces.		
Nano materials		
Metal and Semiconductor Nano materials, Quantum Dots, Wells		
and Wires, Molecule to bulk transitions, Bucky balls and Carbon		
Nano tubes, Nano composite, Molecular machines, Nanofactories,		
6. Nanocatalysts, Nanocomposites, Bio-analytical tools, Nano/micro 0)5	20
arrays, Nano devices, lab- on-a-chip etc.		

Text Book(s):

Title	Author/s	Publication
Materials Science and Metallurgy	O. P. Khanna	Dhanpatrai Publication
Chemical Engineering Materials		Constable and Company
	Rumford F.	Limited, 2nd Edition, 1987
Membrane Separation Processes	Kaushik Nath	PHI Pvt. Ltd., 2008

Principles of Colloid and Surface	Hiemenz, P. C., and	
Chemistry, 3rd Edn.	R. Rajgopalan	Marcel Dekker, NY, 1997.
Nano chemistry A chemical	Ozin G. A, Andre C.	Royal society of chemistry,
approach to nanomaterials	Arsenault	UK,2005.

Reference Book(s):

Title	Author/s	Publication
Callister's Material Science and	R.	
Engineering	Balasubramanian	Wiley India
Chemical Engineering Materials		Indian Book Distributing
	Chaudhry H.	Company, 2nd Edition, Delhi, 1982

Web Material Link(s):

• http://nptel.ac.in/downloads/113106032/

Course:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After completion of the course, the students will be able to:

SECH2040	CHEMICAL ENGINEERING MATERIALS & METALLEURGY
CO 1	Identify crystal structure of various materials.
CO 2	Analyze microstructures, crystallography and defects of different chemical engineering materials and metals
CO 3	Classify the metallurgy of ferrous and nonferrous metals and alloys.
CO 4	Define the basics of polymers and composite material.

Mapping of CO with PO

SECH2040	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	1			3			3			1		
CO 2	1			1			3			3		
CO 3	1			2						3		
CO 4	1			1								

Mapping of CO with PSO

SECH2040	PSO1	PSO2	PSO3
CO 1	3	3	2
CO 2	3	3	3
CO 3			
CO 4			

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Engineering Materials	1,2
2	Structure and Imperfections in Crystals	2,3
3	Ferrous metals and its Alloys	1,4
4	Metals: their behaviors and properties	2,3,4
5	Polymers, Ceramics, and Composites	1,2,3
6	Nano materials	3,5,6

Department of Pharmaceutical Engineering

Course Code: SEPE2930

Course Name: Industrial Exposure

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			eaching Scheme (Hours/Week) Examination Scheme (Marks)									
Theory	neory Practical Tutorial		Dragtical Tutorial Credit		Credit	Theory	7	Practio	al	Tutoria	al	Total
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
			02			100				100		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective of the Course:

To help learners to

- get exposed to the industrial spectrum.
- learn the mechanisms of industry/ workplace.
- be aware about work culture and policies of industries.

Outline of the Course:

Sr. No	Content
1.	Selection of Companies
2.	Company Information collection
3.	Report Writing
4.	Presentation & Question-Answer

Course Evaluation:

Sr. No.	Evaluation criteria	Marks		
1	Actual work carried & Report Submission	50		
2	Final Presentation & Question-Answer session			
TOTAL		100		

Course Outcome(s):

After completion of the course, the students will be able to:

SEPE2930	INDUSTRIAL EXPOSURE				
CO 1	Construct company profile by compiling brief history, management structure,				
	products/services offered, key achievements and market performance for the company				
	visited during internship.				
CO 2	Determine the challenges and future potential for his/her internship organization in				
	particular and the sector in general.				
CO 3	Test the theoretical learning in practical situations by accomplishing the tasks				
	assigned during the internship period.				
CO 4	Apply various soft skills such as time management, positive attitude and				
	communication skills during performance of the tasks assigned in internship				
	organization.				
CO 5	Analyze the functioning of internship organization and recommend changes for				
	improvement in processes.				

Mapping of CO with PO

SEPE2930	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	1	2	3	3	3	3	3				0	3
CO 2	1	2	3	3	3	3	3				3	3
CO 3	1	2	3	3	3	3	3				3	0
CO 4	1	1	1				3				3	3
CO 5	1	1	2	3	3	3	3				0	3

Mapping of CO with PSO

SEPE2930	PSO1	PSO2	PSO3
CO 1			
CO 2	3	3	3
CO 3	3	3	3
CO 4			
CO 5		3	3

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Selection of Companies	1,2,3,4
2	Company Information collection	1,2,3,4
3	Report Writing	1,2,3,4
4	Presentation & Question-Answer	1,2,3,4

Report Writing Guidelines

A. Report Format:

1. Title Page (to be provided by the respective supervisor)

The title page of the project shall give the following information in the order listed:

- Full title of the project as approved by the Mentor;
- The full name of the student/Group of students with enrollment number;
- The qualification for which the project is submitted;
- The name of the institution to which the project is submitted;
- The month and year of submission.
- 2. Project Certification Form

[The form should be duly filled signed by the supervisors.]

3. Acknowledgements

[All persons (e.g. supervisor, technician, friends, and relatives) and organization/authorities who/which have helped in the preparation of the report shall be acknowledged.]

- 4. Table of Contents/Index with page numbering
- 5. List of Tables, Figures, Schemes
- 6. Summary/abstract of the report.
- 7. Introduction/Objectives of the identified problem
- 8. Data Analysis and Finding of Solution
- 9. Application of the identified solution
- 10. Future Scope of enhancement of the Project and Conclusion
- 11. "Learning during Project Work", i.e. "Experience of Journey during Project Duration"

- 12. References(must)
- 13. Bibliography
- 14. Annexures (if any)

B. Guideline for Report Formatting:

- Use A4 size page with 1" margin all sides
- Header should include Project title and footer should contain page number and enrollment numbers
- Chapter Name should be of Cambria font, 20 points, Bold
- Main Heading should be of Cambria font, 14 points, Bold
- Sub Heading should be of Cambria font, 12 points, Bold
- Sub Heading of sub heading should be of Cambria font, 12 points, Bold, Italic
- Paragraph should be of Cambria font, 12 points, no margin at the start of the paragraph

Department of Pharmaceutical Engineering

Course Code: SEPE2040

Course Name: General Pharmacology I

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory Praction	Dractical	Practical Tutorial Cro	Credit	Theory		Practical		Tutorial		Total
	Practical			CE	ESE	CE	ESE	CE	ESE	Total
03			03	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To know in detail the classification, therapeutic use
- To know cardiovascular system
- To know urinary system and respiratory system

	Section I								
Module	Content	Hours	Weightage						
No.			in %						
1.	Introduction to pharmacology Sources of drugs, dosage forms and routes of drug administration, mechanism of action of drugs. Combined effect of drugs, factors modifying drug action, tolerance and dependence. Absorption, Distribution, Metabolism and Excretion of drugs. Principles of basic and clinical pharmacokinetics. Adverse drug reactions. Drug interactions, Bioassay of drugs and biological standardisation, Overview of drug discovery and development.	08	20						
2.	Pharmacology of peripheral nervous system Sympathomimetics, sympatholytics, adrenergic receptor and neuron blocking agents, ganglionic agonists and antagonists agents, neuromuscular blocking agents, local anaesthetic agents.	06	15						
3.	Pharmacology of central nervous system Nerve conduction and transmission in the C.N.S, general anaesthetics, sedatives, hypnotics, anti-anxiety agents and centrally acting muscle relaxants, Psychopharmacological agents – Antipsychotics, antidepressants, neuroleptics, anti-maniacs and hallucinogens, thymoleptics, antiepileptic drugs, Anti-parkinsonism drugs, analgesics, antipyretics, anti-inflammatory (NSIADs) and anti-gout drugs, narcotic analgesics and antagonists, C.N.S. stimulants, drug addiction and drug abuse. Section II	08	15						

Module	Content	Hours	Weightage
No.			in %
	Pharmacology of cardiovascular system		
	Cardiac glycosides, anti-hypertensive drugs, anti-anginal and	12	25
4.	vasodilator drugs including calcium channel blockers and beta		
	adrenergic antagonists, Anti-arrhythmic drugs,		
	antihyperlipidemic drugs, Drugs used in the therapy of shock		
	Pharmacology of urinary system and respiratory system		
	Fluid and electrolyte balance, Diuretics and Anti-diuretics, Anti-		
5.	asthmatic drugs including bronchodilators, leukotriene	11	25
	inhibitors, anti-tussives and expectorants, Respiratory		
	stimulants.		
	TOTAL	45	100

Text Book(s):

Title	Author/s	Publication
Basic & Clinical Pharmacology,	Katzung, B.G.	P rentice Hall, International,11th
		edition, McGraw-hill, 2009.
Essentials of Medical Pharmacology	Tripathi, K.D	Jay Pee Publishers, New Delhi,7th

Reference Book(s):

Title	Author/s	Publication
"Biotherapeutic Agents and Infectious		
Diseases",	Elmer, G.W.	Humana Press, 1999.
		5th Edition, Churchill Liningstone /
Pharmacology	Rang, H.P.	Elsevier, 2003.

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

SEPE2040	GENERAL PHARMACOLOGY-I
CO 1	Discuss, what drugs do to the living organisms and how their effects can beapplied to
	therapeutics.
CO 2	Knowledge of drugs like sources, physico chemical properties, mechanism of action,
	physiological and biochemical effects.
CO 3	Establish the knowledge of absorption, distribution, metabolism and excretion along
	with the adverse effects, clinical uses, interactions, doses, contraindications and routes
	of administration of different classes of drugs.
CO 4	Explain the pharmacology of drugs acting on Central Nervous System.

Mapping of CO with PO

SEPE2040	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	1			1	1	3		1	2	1		
CO 2	1			1	1	3		3	2	2		
CO 3									1	1		1
CO 4				2	1	2			2	2		1

Mapping of CO with PSO

SEPE2040	PSO1	PSO2	PSO3
CO 1	3	1	1
CO 2	3	1	2
CO 3	2	1	2
CO 4	1	1	1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to pharmacology	1,2
2	Pharmacology of peripheral nervous system	1,2,4
3	Pharmacology of central nervous system	2,4
4	Pharmacology of cardiovascular system	2,4
5	Pharmacology of urinary system and respiratory	1,2,4
	system	

Department of Pharmaceutical Engineering

Course Code: SEPE2050

Course Name: Molecular Biology and Genetic Engineering

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory Practical	Dractical	actical Tutorial Cre	Tutorial Credit	Theory		Practical		Tutorial		Total
	riacticai			CE	ESE	CE	ESE	CE	ESE	Total
04	02		05	40	60	20	30			150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To provide the molecular processes of DNA replication
- To provide the basic concepts of protein and nucleic acid structure

	Section I							
Module	Content	Hours	Weightage					
No.			in %					
	Cell structure and function of the organelles							
	Prokaryotic, Eukaryotic cells, Sub-cellular organelles and							
1.	functions. Principles of membrane organization membrane	08	10					
	proteins, cytoskeletal proteins. Extra cellular matrix, cell-cell							
	junctions, various types of transport across cell membrane.							
	Cell division, cancer and immortalization							
2.	Cell cycle - Mitosis, Meiosis, Molecules controlling cell cycle,	07	15					
۷.	cancer, role of Ras and Raf in oncogenesis and apoptosis. Stem	07	13					
	cells, immortalization of cells and its applications							
	Chemistry of nucleic acids							
	Introduction to nucleic acids: Nucleic acids as genetic material,							
	Structure and physicochemical properties of elements in DNA							
	and RNA, Biological significance of differences in DNA and RNA.							
	Primary structure of DNA: Chemical and structural qualities of							
3.	3',5'-Phosphodiester bond. Secondary Structure of DNA: Watson	15	25					
	& Crick model, Chargaff's rule, X-ray diffraction analysis of DNA,							
	Forces stabilizes DNA structure, Conformational variants of							
	double helical DNA, Hogsteen base pairing, Triple helix,							
	Quadruple helix, Reversible denaturation and hyperchromic							
	effect. Tertiary structure of DNA: DNA supercoiling.							
	Section II							
Module	Content	Hours	Weightage					
No.			in %					

4.	DNA replication		
	Overview of Central dogma. Organization of prokaryotic and eukaryotic chromosomes. DNA replication: Meselson & Stahl experiment, bi-directional DNA replication, Okazaki fragments, Proteomics of DNA replication, Fidelity of DNA replication, Inhibitors of DNA replication, Overview of differences in prokaryotic and eukaryotic DNA replication, Telomere replication in eukaryotes.	10	10
5.	Transcription Structure and function of mRNA, rRNA and tRNA. Characteristics of promoter and enhancer sequences. RNA synthesis: Initiation, elongation and termination of RNA synthesis, Proteomics of RNA synthesis, Fidelity of RNA synthesis, Inhibitors of transcription, Differences in prokaryotic and eukaryotic transcription. Basic concepts in RNA world: Ribozymes, RNA processing: 5'- Capping, Splicing-Alternative splicing, Poly 'A' tail addition and base modification.	10	20
6.	Translation Introduction to Genetic code: Elucidation of genetic code, Codon degeneracy, Wobble hypothesis and its importance, Prokaryotic and eukaryotic ribosomes. Steps in translation: Initiation, Elongation and termination of protein synthesis. Inhibitors of protein synthesis. Post-translational modifications and its importance.	10	20
	TOTAL	60	100

List of Experiments

S.no	Experiment list	Hours
1	Isolation of total and plasmid DNA from bacteria.	04
2	Isolation of total DNA from plant and animal cells/tissues.	04
3	Restriction enzyme digestion of DNA.	04
4	Agarose gel electrophoresis of nucleic acids.	04
5	Elution of DNA from Agarose gels.	04
6	Polymerase Chain Reaction [PCR].	04
7	Induction of recombinant protein expression	04
8	Western blotting.	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
"Molecular Biology"	Friefelder, David,	2nd Edition, Narosa Publishing
		House,1999.
"Molecular Biology",	Weaver, R.F.	3rd Edition, McGraw Hill, 2005.

Reference Book(s):

Title		Author/s	Pub	Publication		
	"Molecular Biology of the Gene	Waston, J.D.	5th	Edition,	Pearson	Education,

		2004.
	Walker, J.M. and R.	4th Edition, Panima, 2002.
"Molecular Biology and Biotechnology	Rapley	4th Euruon, i amma, 2002.

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

SEPE2050	MOLECULAR BIOLOGY & GENETIC ENGINEERING
CO 1	Identify the various levels of gene regulation and protein function including signal
	transduction and cell cycle control.
CO 2	Interpret the outcome of experiments that involve the use of recombinant DNA
	technology and other common gene analysis techniques.
CO 3	Relate properties of cancerous cells to mutational changes in gene function.
CO 4	Execute various experiments commonly involved in molecular biology research.
CO 5	Impart detailed understanding of transcription and translation.

Mapping of CO with PO

- 11 8 -												
SEPE2050	PO1	P02	P03	P04	PO5	P06	P07	P08	P09	PO10	P011	PO12
CO 1		1		2	1			1	1	1		-
CO 2		1		2	1				3	1		1
CO 3				1	1				1	1		
CO 4		1		1	1			1	2	3		
CO 5				1	1							

Mapping of CO with PSO

SEPE2050	PS01	PSO2	PSO3
CO 1	1		1
CO 2	1	1	1
CO 3	2	2	2
CO 4	1	1	1
CO 5	1	1	1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Cell structure and function of the organelles	1,2
2	Cell division, cancer and immortalization	2,4
3	Chemistry of nucleic acids	2,4,5
4	DNA replication	2,3,4,5

5	Transcription	1,2
6	Translation	2,4

Department of Pharmaceutical Engineering

Course Code: SEPE2920

Course Name: Industry aligned learning -II

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	ory Practical Tutorial Credit		Theory	7	Practic	al	Tutoria	al	Total	
Theory	Fractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
02			02	100						100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To deliver knowledge regarding effluents generated during manufacturing and idea of equipment's used for the treatment of effluent
- Management of water to control waste of water and control aqueous effluent
- To deliver knowledge regarding different vacuum system and energy conservation

Course Content:

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Water Management with respect to Zero Discharge in Pharmaceutical Industry	05	20				
2.	Energy Conservation measures required for Pharmaceutical Industry	10	30				
	Section II						
Module No.	Content	Hours	Weightage in %				
3.	Introduction to Effluent Treatment Plant, Scrubber system, Multi Effect Evaporation system etc.	10	30				
4.	Different kinds of Vacuum system	05	20				
	TOTAL	30	100				

Text Book(s):

Title	Author/s	Publication
Waste water treatment	M N Rao	Mc Grill

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

SEPE2920	INDUSTRY ALIGNED LEARNING-II
CO 1	Acquire knowledge regarding effluent treatment and controlling quantity of water
	through proper management system.
CO 2	Ability to identify different kinds of vacuum system.
CO 3	Knowledge to established energy conservation in pharmaceutical industry.
CO 4	Identify various scribing systems, multi effect evaporators and drying system.

Mapping of CO with PO

SEPE2920	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	1				1	3	2	1	2			1
CO 2	1				1	3	2	-	2			1
CO 3	1				1		1	1	1			-
CO 4	2				1				1			

Mapping of CO with PSO

SEPE2920	PSO1	PSO2	PSO3
CO 1	3	1	
CO 2	3	3	1
CO 3	3	2	
CO 4	2	1	1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Water management	1,2,4
2	Effluent Treatment Plant	1,2,3,4
3	Energy Conservation	1,2,3
4	Vacuum system	1,2,4

Department of Chemical Engineering

Course Code: SECH2050

Course Name: Fluid Flow Operations

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teachin	ig Scheme (Ho	Scheme (Hours/Week) Examination Scheme (Mark				Marks)				
				The	ory	Pract	ical	Tuto	rial	
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02		04	40	60	20	30			150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- get the introductory idea and explanation of basic fundamentals of Fluid Flow Operations which is used in the applications of chemical engineering, Porous media movement, Aerodynamics, hydraulics, Marine Engineering, Gas dynamics etc.
- learn Fluid Properties.
- understand the importance of flow measurement and its applications in Industries and to obtain the loss of flow in a flow system.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Basic Concept and Fluid statics & its application Scope and Applications of fluid flow, Properties of fluids such as Density, viscosity, surface tension, capillarity effect, vapour pressure. Nature of fluids: Incompressible and compressible fluids, Pressure concepts, Force and Pressure, Pascal's law of Pressure at a point, Pressure measurement by Manometers – U tube, Inclined U tube and Differential, Centre of Pressure, Hydrostatic equilibrium in gravitational and centrifugal field, Hydrostatic forces on surface – Vertical, Horizontal and Inclined, Forces on curved Surfaces, Buoyancy and Buoyant Force, Centre of Buoyancy and Metacenters, Determination of Metacentric Height, Stability of Floating and Submerged Body, Position of metacenter relative to Centre ofbuoyancy. Manometers, Inclined manometer, Continuous gravity ad centrifugal decanter.	08	15

	Boundary layers & its applications		
2.	Concept of Boundary Layer, Boundary layer Thickness, Momentum Thickness, Displacement Thickness, Drag and Lift, Separation of Boundary layer, Streamlined and Bluffed Bodies	04	10
3.	Kinematics of fluid flow Types of fluid flow namely steady and unsteady, Uniform and non- uniform, laminar and turbulent, compressible and incompressible internal and external, one, two-dimensional flow. Newton's Law of Viscosity, Rheological behavior of fluid, capillary viscometer.	04	10
4.	Basic fluid equations & fluid dynamics Bernoulli's equation Euler's Equation, Modified Bernoulli's equation. Major and Minor losses, Equivalent length, flow through pipe in series, parallel, pipe network Application Venturimeter: Horizontal and inclined, Orifice meter, Pitot tube Notches and Weirs: Introduction, classification, Derivation for V – notch, Rectangular notch	06	15
	Section II	l .	
Module No.	Content	Hours	Weightage in %
5.	Flow of compressible fluids and its applications Introduction to compressible flow, flow through pipes, Pipe fitting. Valves, nozzles, Fans, Blowers ejectors and compressors; Continuity equations, Velocity of sound, Stagnation temperature, Processes of compressible flow.	07	15
6.	Flow of Fluids through Solids Form drag - skin drag - Drag coefficient. Flow around solids and packed beds. Friction factor for packed beds. Ergun's Equation - Motion of particles through fluids - Motion under gravitational and centrifugal fields - Terminal settling velocity. Fluidization - Mechanism, types, general properties - applications	08	15
7.	Transportation Classification and types, Centrifugal pumps – Construction and working, Power required, Definitions of heads and efficiency, NPSH, Priming, Cavitations, characteristic curves. Specific speed, minimum speed.	08	20

Reciprocating Pump: Classifications and working. Power		
Consumption in Agitation: Power curves, Power No., types of		
impellers. Introduction to Compressors, Fans and Blowers.		
Types of Valves: Globe valves, Gate valves, butterfly valves		
and non – Return valves.		
TOTAL	45	100

List of Experiment:

Sr No	Experiment List	Hours
1.	Determine metacentric height of floating body.	02
2.	Measurement of pressure using different types of manometers.	04
	Determine Co-efficient of Discharge by venturimeter, Orificemeter and	
3.	Rotameter.	04
4.	Verification of Bernoulli's apparatus.	02
5.	Measurement of velocity of flow using Pitot tube.	02
6.	Measurement of Friction factor for Different pipes & annulus.	02
7.	Measurement of viscosity using Redwood Viscometer.	02
	Determine discharge through triangular/trapezoidal / rectangular	
8.	notch.	02
9.	Determine different flow patterns by Reynolds's apparatus.	02
10.	Measurement of lift and drag of aerofoil.	02
	Measurement of static pressure distribution around aerofoil using	
11.	wind tunnel.	02
12.	Experiment on viscosity by stoke's law	02
13.	Experiments on characteristics of centrifugal pumps	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Textbook of Fluid Mechanics and Hydraulic Machines	R. K. Bansal	Laxmi Publications
Introduction to Fluid Mechanics and Fluid Machines	S.K. Som & G Biswas.	Tata McGraw Hill Publication
Unit Operations of Chemical Engineering	McCabe W.L., Smith J.C., Harriott P.	McGraw Hill

Reference Book(s):

Title	Author/s	Publication
Fluid Mechanics	Frank M. White	Tata McGraw Hill
		Publication
Fluid Mechanics	R.K. Rajput	Schand Publication
Fluid Mechanics for Chemical Engineers	De Nevers N	McGraw-Hill

Web Material Link(s):

• http://nptel.ac.in/courses/112105171/1

Course:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s)

After the completion of the course, the students will be able to:

SECH2050	FLUID FLOW OPERATIONS
CO 1	Understand fundamentals of fluids and its types.
CO 2	Analyze various flow problems and flow characteristics for various flow conditions
CO 3	Demonstrate working of different flowmeters.
CO 4	Determine major and minor losses through different pipes fittings.
CO 5	Evaluation of pump performance

Mapping of CO with PO

SECH2050	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	1	1	1							2		1
CO 2	2	1	1									
CO 3	1	1	1									
CO 4	1	1										
CO 5		1		1								

Mapping of CO with PSO

SECH2050	PSO1	PSO2	PSO3
CO 1	1		
CO 2	1	1	1
CO 3	2	1	
CO 4		3	
CO 5		1	1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Basic Concept and Fluid statics & its application	1,2
2	Boundary layers & its applications	2,4
3	Kinematics of fluid flow	2,3,4
4	Basic fluid equations & fluid dynamics	1,2
5	Flow of compressible fluids and its applications	1,2,4,5
6	Flow of Fluids through Solids	2,3,4
7	Transportation	3,4,5

Department of Chemical Engineering

Course Code: SECH2061

Course Name: Physical Inorganic and Analytical Chemistry

Prerequisite Course(s): SESH1220 - Chemistry

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exar	ninatior	ı Scheme	e (Marks	:)	
				Theory Practical			Tuto	rial		
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02		04	40	60	20	30			150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learner to

- Provide the basic knowledge of physical, inorganic and analytical chemistry to students in the context of industrial need to make a good foundation in Chemistry which will help to the students in their self-development and to cope up with industries need.
- Understand the basics of different chemistry
- Make them aware about various analytical techniques used for the analysis of chemical substances
- Use physical chemistry and its theoretical principles and experimental techniques to investigate the chemical transformations and Physical changes accompanying them.
- Make them aware about the inorganic chemistry and its qualitative analysis.

	Section I		
Module			Weightage
No.	Content	Hours	in %
	Properties of Liquid and preparation of solution		
	Define the terms: Solute, Solvent and Solution, Different standards		
	of solutions like Primary standards and Secondary standards,		
	Definition and different methods of expressing concentration,		
1.	Definition of the Surface tension, Parachor, Refractive index, Molar	02	04
	refraction, Specific refraction, Viscosity.		
	Electro analytical techniques for analysis		
	Basic concepts, Standard reduction potentials, Measurement of		
	overall redox reaction tendency, Introduction to Potentiometry,		
	Electrodes (Reference electrode, Saturated calomel reference		
2.	electrode, indicator electrode, pH electrode), potentiometric	06	14
	titration, Karl Fischer titration (End point detection, The		
	coulometric method)		

	_, _ ,	1	
	Phase Rule Introduction Phase Pule and its morits and demorits Phase		
	Introduction, Phase Rule and its merits and demerits, Phase diagrams of single component systems (H2O and Sulphur), two		
3.	component systems involving eutectic systems (Pb-Ag, Sn-Mg),	03	07
J.	Applications.	03	07
	Nuclear Chemistry		
	Basic terms and concepts, Types of nuclear reactions, Nuclear		
	fission and fusion, nuclear reactors, radiation measurements		
	(Detectors- Gas ionization detectors- principle, Ion chambers-		
4.	proportional counter, G.M. Counter-scintillation detector- principle,	05	11
	features, Inorganic & organic scintillators, solid state detectors),		
	disposal of nuclear waste.		
	Emerging Trends in Green Chemistry		
	Introduction to Green Chemistry, Twelve principles of Green		
	Chemistry with examples, Designing a Green Synthesis, Example of		<u> </u>
5.	green synthesis (adipic acid, catechol, Methyl Methacrylate).	02	04
	Microscopy Techniques		
	Principles, Instrumentation, Analysis of images/artifacts,		
	Applications, AFM (Atomic force microscopy), SEM (Scanning		
6.	electron microscope), TEM (Transmission electron microscopy),	04	10
	FTIR.		
	Section II	T	
Module		**	Weightage
No.	Content	Hours	in %
	Corrosion and its Control Introduction and theories of corrosion, Dry corrosion (chemical),		
	Wet corrosion (electrochemical), Bio corrosion, Mechanism of		
	corrosion, Factors influencing corrosion (ratio of anodic to cathodic		
	areas, nature of metal, nature of corrosion product, nature of		
	medium – pH, conductivity, and temperature), Corrosion control		
	and prevention methods, corrosion inhibitors, cathodic and anodic		
7.	protection and Electroplating. Protective coatings, chemical	07	17
	principles involved, boiler corrosion, inter granular corrosions.		
	Instrumental Methods of Chemical Analysis: Spectroscopic		
	methods		
	Basic concepts, Instrumentation, Interpretation of data and relevant		
	applications, Ultraviolet spectroscopy (UV), Infrared spectroscopy		
8.	(IR), Nuclear Magnetic Resonance (NMR), Mass Spectrometry.	06	13
	Thermal methods of analysis		
	TGA, DTA, DSC (Principle, Instrumentation, Quantitative aspects of		
	curves and/or Interpretation of curves, Applications)		
0		٥٢	1 / 1
9.		05	10

	Separation Techniques		
	Principle, Instrumentation, selection of column and its		
	specifications, applications and Limitations, Planar Chromatography		
	(Paper chromatography, Thin Layer Chromatography), Gas		
10.	Chromatography (GC), High Performance Liquid Chromatography	05	10
	(HPLC)		
	TOTAL	45	100

List of Experiment:

Sr. No.	Experiment List	Hours
	To determine the strength of the given Hydrochloric acid by Sodium	
1.	hydroxide conduct metrically.	04
2.	To synthesize Chrome Alum.	04
	To determine λmax and concentration of unknown solution of KMnO4	04
3.	in 2N H2SO4 using Colorimeter.	
4.	Determine the amount of Ba ² + as BaSO4 in a salt solution.	04
5.	To investigate the reaction between K2S2O8 and KI.	04
6.	Conductometric titration of strong acid vs. strong base.	04
	Determination of dissociation constant of weak acid by pH metric	04
7.	method.	
8.	Determination of cloud point of a surfactant in the presence of salts.	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Text Book of Engineering	Chawla S.	Dhanpat Rai & Co. Pvt. Ltd., Delhi,
Chemistry		2003.
Engineering Chemistry	Sharma B. K.	Krishna Prakashan Media (P) Ltd,
		Meerut.,2001
Instrumental Methods of	Ewing G. W.	Tata-McGraw Hill., New Delhi, 2001.
Chemical Analysis		

Reference Book(s):

Reference Book(s).				
Title	Author/s	Publication		
Analytical Chemistry for				
Technicians (4 th edition)	John Kenkel	CRC Press, Taylor & Francis Group		
Corrosion Engineering				
Principles and Practice	Pierre R. Roberge	The McGraw-Hill Companies		
		Kluwer Academic Publishers,		
New-Trends-in-Green-	V. K. Ahluwalia,	Boston Dordrecht London &		
Chemistry	M.Kidwai	Anamaya Publishers, New Delhi		

Web Material Link(s):

http://nptel.ac.in/courses/105104148/

Course:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Practical which should be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SECH2061	PHYSICAL INORGANIC & ANALYTIC CHEMISTRY				
CO 1	Describe the basics of different chemistries used in chemical industries.				
CO 2	Assess the theoretical and practical knowledge about modern analytical techniques and				
	its quantitative analysis.				
CO 3	Predict and apply the analytical tools used in research laboratories.				
CO 4	Evaluate fundamentals of electrochemistry and recognize the electrochemical				
	processes.				
CO 5	Identify and define various types of nuclear changes or processes including fission,				
	fusion and decay reactions.				

Mapping of CO with PO

SECH2061	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2	2	1	1	-	3				2		3
CO 2	3	3	2	3	-	3				1		3
CO 3	3	3	3	3	3	3				1		3
CO 4	3	3	2	2	3	3				3		3
CO 5	3	3		2	3	3				3		3

Mapping of CO with PSO

SECH2061	PSO1	PSO2	PSO3
CO 1	3		1
CO 2	3		2
CO 3	3		3
CO 4	3		3
CO 5	3		3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Properties of Liquid and preparation of solution	1,2
2	Electro analytical techniques for analysis	1,3
3	Phase Rule	2,5
4	Nuclear Chemistry	1,2,3
5	Emerging Trends in Green Chemistry	1,2,5
6	Microscopy Techniques	2,5
7	Corrosion and its Control	2,3,4
8	Instrumental Methods Of Chemical Analysis:	4,5
	Spectroscopic methods	4,3
9	Thermal methods of analysis	2,4,5
10	Separation Techniques	2,4,5

Department of Chemical Engineering

Course Code: SECH2070

Course Name: Chemical Engineering Thermodynamics-I

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teach	Teaching Scheme (Hours/Week)				Exar	nination	Scheme	(Marks)	
				The	ory	Prac	tical	Tuto	rial	
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03		02	05	40	60			50		150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help the learners to

- understand and appreciate thermodynamics as applied to various Chemical Engineering Processes.
- avail practical experience on the principles, viz., thermodynamic laws, Solution thermodynamics, Phase equilibrium and reaction equilibrium.

	Section I					
Module			Weightage			
No.	Content	Hours	in %			
	Introduction to the laws of Thermodynamics					
	Concept of Equilibrium, Entropy & Gibbs Free Energy, Laws of					
1.	Thermodynamics (Open and Closed Systems) and Equations of	07	10			
	Change (dU, dH, dA, dG).					
	Properties of pure fluids					
	PVT behavior including EOS for mixtures; Fugacity estimation/					
	calculations based on PVT behavior, Heat effects accompanying					
2.	chemical Reactions. Phase equilibrium criteria and VLE calculations	07	15			
	for different pressure ranges including flash calculations.					
	Estimation of VLE data					
	Fugacity, Fugacity Coefficient, Activity, Activity Coefficient,					
	Activity coefficient calculation from experimental VLE data and					
3.	data reduction, applications of Gibbs-Duhem relation for	05	10			
	calculations of and consistency check for VLE data.					
	Phase Diagrams in Thermodynamics					
4.	Phase diagrams for miscible, partially miscible and immiscible					
	liquid mixtures, introduction to LLE and VLLE calculations.					
	Section II					

Module			Weightage
No.	Content	Hours	in %
	Thermodynamic Properties of Solutions		
	Introduction to fugacity and activity, Activity Coefficients- Partial		
	molar properties- miscible system, immiscible system, Chemical		
	potential as a partial molar property-Lewis randall rule-Roults and		
	Henry's law-Gibbs Duhem Equation Mathematical relation among		
	thermodynamic functions, Maxwell's relations, Interrelation		
	between H, S, U, G, Cp, Cv, properties of single- and two-phase		
	system. Types of thermodynamic diagrams. Partially immiscible		
5.	system, testing of vapor-liquid equilibrium data, Van Laar equation.	15	30
	Margules equation, Redlich-Kister equation, P-X-Y, T-X-Y, & X-Y		
	Diagram, vapor-liquid equilibrium of ideal and non-ideal solution		
	Refrigeration and liquefaction		
	Carnot refrigerator, Vapour compression cycle, Absorption		
6.	refrigeration, Choice of refrigerant, Heat pump, Liquefaction	08	20
	processes.		
	TOTAL	45	100

Text Book(s):

Title	Author/s	Publication
Introduction to Engineering	J.M. Smith, Hendrick Van	McGraw Hill, New York, 2005.
Thermodynamics	Ness, Michael M. Abbott,	
Chemical Engineering	S. Sundaram	Ahuja Publishers, New Delhi,
Thermodynamics		2001
A Textbook of Chemical	K.V. Narayanan	PHI Learning, 2004
Engineering Thermodynamics		

Reference Book(s):

Title	Author/s	Publication
Chemical Engineering		
Thermodynamics	B.F. Dodge	McGraw Hill, New York, 1971.
Chemical Engineering		
Thermodynamics	Y.V.C. Rao	Universities Press (1997)
Chemical Process		Prentice Hall India, 1994
Thermodynamics 3 rd Ed,	B.G. Kyle	
Chemical Process Principles	Hougen, O.A., Watson, K.M.,	John Wiley & Sons, (CBS Publishers
Part II	and Ragatz, R.A.	& Distributors, New Delhi).

Web Material Links:

• http://nptel.ac.in/courses/103106070/

Course: Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.

• End Semester Examination consists of 60 marks.

Practical/Tutorial:

- Continuous Evaluation consists of performance of Tutorial which should be evaluated out of 10 marks for each Tutorial and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation of various topics consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SECH2070	CHEMICAL ENGINEERING THERMODYNAMICS-I
CO 1	Relate the terminology associated with engineering thermodynamics.
CO 2	Evaluate changes in different thermodynamic properties for pure fluids using eos.
CO 3	Correlate experimental vle data of pure component and ideal mixtures with suitable equations.
CO 4	Calculate feasibility of reaction, heat of reaction, extent of reaction & equilibrium composition.
CO 5	Construct to devise a technically feasible refrigerator for wide applications.

Mapping of CO with PO

SECH2070	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	2	1				2					1	
CO 2	2					2						
CO 3	2	1				2					2	
CO 4	3	1				2					2	
CO 5	2	1				2						

Mapping of CO with PSO

SECH2070	PSO1	PSO2	PSO3
CO 1			
CO 2		1	
CO 3		2	
CO 4		2	
CO 5		1	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to the laws of Thermodynamics	1,2
2	Properties of pure fluids	2,3
3	Estimation of VLE data	3,4,5
4	Phase Diagrams in Thermodynamics	4
5	Thermodynamic Properties of Solutions	4,5,6
6	Refrigeration and liquefaction	5,6

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B.TECH. PHARMACEUTICAL ENGINEERING PROGRAMME AY: 2022-23

		_			Teac	hing Sche	me		Examination Scheme						
Sem	Course Cod	Course Name	Offered by	Contact Hours			Credit	The	Theory		Practical		Tutorial		
	e	Ivanic		Theory	Practical	Tutorial	Total	Creart	CE	ESE	CE	ESE	CE	ESE	Total
	SEPE3010	Industrial Pharmacy	PE	3	2	0	5	4	40	60	20	30	0	0	150
	SEPE3021	General	PE	4	2	0	6	5	40	60	20	30	0	0	150
	SEPE3030	Medicinal Chemistry	PE	3	2	0	5	4	40	60	20	30	0	0	150
5	SEPE3910	Industry Aligned	PE	3	0	0	3	3	100	0	0	0	0	0	100
	CFLS3021	Foreign Language-II	CFLS	2	0	0	2	2	40	60	0	0	0	0	100
	SEPD3050	- J	SEPD	2	0	0	2	1	100	0	0	0	0	0	100
	SEPE3930	Summer Training	PE		4	•	0	4	0	0		0	0	0	100
		Elective-I	СН	3	0	0	3	3	40	60	0	0	0	0	100
			Total				26	26							950
	SEPE3040	Chemistry of Natural	PE	3	0	0	3	3	40	60	0	0	0	0	100
	SEPE3050	Technology of Solid	PE	3	2	0	5	4	40	60	20	30	0	0	150
6	SEPE3060	Quality Control & Quality Assurance – Instrumentation & Validation	PE	3	0	0	3	3	40	60	0	0	0	0	100
	SEPE3920	Industry Aligned	PE	3	0	0	3	3	100	0	0	0	0	0	100
	SECH3052	Chemical Reaction	СН	3	2	0	5	4	40	60	20	30	0	0	150
	SEPE3490	Online NPTEL Course		3	0	0	3	3	10 0	0	0	0	0	0	100
	SEPD3020	Corporate Grooming & Etiquette	SEPD	1	2	0	3	2	0	0	5	5	0	0	100
			Total				25	22							800

	Elective Courses														
Offered	Course		Offered		Teach	ning Scheme			Examination Scheme						
from	Course Code	Course Name	By		Contact l	Hours		Credit	Th	eory	Practical		Tutorial		Total
Sem.	Couc	1	Бу	Theory	Practical	Tutorial	Total	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	SECH3510	Pharma Technology – API & Formulation	СН	3	0	0	3	3	40	60	0	0	0	0	100
5	SECH3520	Process Auxiliaries & Utilities in Allied Industries	СН	3	0	0	3	3	40	60	0	0	0	0	100
	SECH3530	Air Pollution & Control	СН	3	0	0	3	3	40	60	0	0	0	0	100
	SECH3540	Polymer Science & Technology	СН	3	0	0	3	3	40	60	0	0	0	0	100

Department of Pharmaceutical Engineering

Course Code: SEPE3010

Course Name: Industrial Pharmacy

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)								
Theory	Practical Tutorial		Totavial Condit		Tutorial Cradit		eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
03	02		04	40	60	20	30			150		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Know the various pharmaceutical dosage forms and their manufacturing techniques.
- Know various considerations in development of pharmaceutical dosage forms.
- Formulate solid, liquid and semisolid dosage forms and evaluate them for their quality.

	Section I		
Module No.	Content	Hours	Weightage in %
	Preformulation Studies:		
	Introduction to preformulation, goals and objectives, study of		
	physicochemical characteristics of drug substances.		
	a. Physical properties: Physical form (crystal & amorphous),		
	particle size, shape, flow properties, solubility profile (pKa, pH,		
1.	partition coefficient), polymorphism	07	20
	b. Chemical Properties: Hydrolysis, oxidation, reduction,		
	racemisation, polymerization BCS classification of drugs & its		
	significant Application of preformulation considerations in the		
	development of solid, liquid oral and parenteral dosage forms		
	and its impact on stability of dosage forms.		
	Tablets:		
	a. Introduction, ideal characteristics of tablets, classification of		
	tablets. Excipients, Formulation of tablets, granulation methods,		
	compression and processing problems.	0.0	
2.	Equipments and tablet tooling.	08	15
	b. Tablet coating: Types of coating, coating materials,		
	formulation of coating composition, methods of coating,		
	equipment employed and defects in coating.		
	c. Quality control tests: In process and finished product tests		
	Capsules:		
2	a. Hard gelatin capsules: Introduction, Production of hard gelatin	07	15
3.	capsule shells. Size of capsules, Filling, finishing and special	07	15
	techniques of formulation of hard gelatin capsules,		
	manufacturing defects. In process and final product quality		

	control tests for capsules.		
	b. Soft gelatin capsules: Nature of shell and capsule content, size		
	of capsules, importance of base adsorption and minim/gram		
	factors, production, in process and final product quality control		
	tests. Packing, storage and stability testing		
	of soft gelatin capsules and their applications.		
	Section II		
Module	Content	Hours	Weightage
No.			in %
	Parenteral Products:		
	a. Definition, types, advantages and limitations. Preformulation		
	factors and essential requirements, vehicles, additives,		
	importance of isotonicity.		
	b. Production procedure, production facilities and controls,		
4.	aseptic processing	10	20
	c. Formulation of injections, sterile powders, large volume		
	parenterals and lyophilized products.		
	d. Containers and closures selection, filling and sealing of		
	ampoules, vials and infusion fluids. Quality control tests of		
	parenteral products.		
	Cosmetics: Formulation and preparation of the following		
5.	cosmetic preparations: lipsticks, shampoos, cold cream and	06	15
	vanishing cream, tooth pastes, hair dyes and sunscreens.		
	Pharmaceutical Aerosols: Definition, propellants, containers,		
6.	valves, types of aerosol systems; formulation and manufacture	07	15
υ.	of aerosols; Evaluation of aerosols; Quality control and stability	07	13
	studies.		
	TOTAL	45	30

List of Experiments

S.no	Experiment list	Hours			
1	Preformulation studies on paracetamol/asparin/or any other drug	04			
2	Preparation and evaluation of Paracetamol tablets	04			
3	Preparation and evaluation of Aspirin tablets	03			
4	Coating of tablets- film coating of tables/granules				
5	Preparation and evaluation of Tetracycline capsules	03			
6	Preparation of Calcium Gluconate injection	02			
7	Preparation of Ascorbic Acid injection	03			
8	Qulaity control test of (as per IP) marketed tablets and capsules	03			
9	Preparation of Eye drops/ and Eye ointments	03			
10	Preparation of Creams (cold / vanishing cream)	03			
	TOTAL	30			

Text Book(s):

Title	Author/s	Publication
Drug stability - Principles and practice	Cartensen & C.J.	3rd Edition, Marcel Dekker Series, Vol
	Rhodes	107.

Reference Book(s):

Title	Author/s	Publication
Pharmaceutical dosage form disperse	Liberman &	
system VOL-1	Lachman	Prentice Hall

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam

Course Outcome(s):

After the completion of the course, the students will be able to:

	<u> </u>
SEPE3010	INDUSTRIAL PHARMACY
CO 1	Outline the objectives and applications of preformulation studies in the development
	and stability of dosage forms.
CO 2	Discuss the formulation, manufacturing, coating and quality control tests of tablets.
CO 3	Review the formulation and manufacturing considerations of liquid orals.
CO 4	Illustrate the pharmaceutical aspects of capsules and pellets.
CO 5	Describe the preparation and quality control of parenteral and ophthalmic preparations.

Mapping of CO with PO

. 11 0 -												
SEPE3010	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	1	2	2	2	1		3	1	3	2	2	2
CO 2	2	2	1	1	1		1	1	2	1	2	2
CO 3	1	2	2	1	1		2	1	2	1	1	1
CO 4	2	2	2	2	3	2	2	1	2	2	2	3
CO 5	2	2	2	2	1	2	2	1	2	1	2	1

Mapping of CO with PSO

11 0			
SEPE3010	PSO1	PSO2	PSO3
CO 1	3	2	2
CO 2	2		
CO 3	2	2	
CO 4	1	3	3
CO 5	3	2	2

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Preformulation Studies	1,2
2	Tablets	1,2,3
3	Capsules	1,3
4	Parenteral Products	1,2
5	Cosmetics	1,3,2
6	Pharmaceutical Aerosols	1,2

Department of Pharmaceutical Engineering

Course Code: SEPE3021

Course Name: General Pharmacology II

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			ne (Hours/Week) Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tuto	rial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
04	02		05	40	60	20	30			150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Understand fundamental knowledge on various aspects (classification, mechanism of action, therapeutic effects, clinical uses, side effects and Contraindications) of drugs.
- Understand mechanism of drugs acting on different systems of body.
- Emphasis on the basic concepts of bioassay.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Pharmacology of drugs acting on cardio vascular system Introduction to hemodynamic and electrophysiology of heart, Drugs used in congestive heart failure, Drugs used in congestive heart failure, Anti-hypertensive drugs, Anti-anginal drugs, Anti- arrhythmic drugs, Anti-hyperlipidemic drugs	08	10				
2.	Pharmacology of drugs acting on cardio vascular system Drug used in the therapy of shock, Hematinics, coagulants and anticoagulants, Fibrinolytics and anti-platelet drugs, Plasma volume expanders	07	15				
3.	Pharmacology of drugs acting on urinary system Diuretics Anti-diuretics, Urinary Antiseptics, Cholinergics & AntiCholinergics, Acidifiers & Alkanizers.	15	25				
	Section II						
Module No.	Content	Hours	Weightage in %				
4.	Autocoids and related drugs Introduction to autacoids and classification, Histamine, 5-HT and their antagonists, Prostaglandins, Thromboxanes and Leukotrienes, Angiotensin, Bradykinin and Substance P, Nonsteroidal anti-inflammatory agents, Anti-gout drugs, Antirheumatic drugs	10	10				

	Pharmacology of drugs acting on endocrine system		
	Basic concepts in endocrine pharmacology, Anterior Pituitary		
	hormones- analogues and their inhibitors, Thyroid hormones-		
5.	analogues and their inhibitors, Hormones regulating plasma	10	20
	calcium level- Parathormone, Calcitonin and Vitamin-D, Insulin,		
	Oral Hypoglycemic agents and glucagon, ACTH and		
	corticosteroids		
	Pharmacology of drugs acting on endocrine system		
	Androgens and Anabolic steroids, Estrogens, progesterone and		
	oral contraceptives, Drugs acting on the uterus, Bioassay:-	10	20
6.	Principles and applications of bioassay, Types of bioassay,	10	
	Bioassay of insulin, oxytocin, vasopressin, ACTH,d-		
	tubocurarine,digitalis, histamine and 5-HT		
	TOTAL	60	100

List of Experiments

S.no	Experiment list	Hours		
1	Introduction to in-vitro pharmacology and physiological salt solutions.			
2	Effect of drugs on isolated frog heart.	04		
3	Effect of drugs on blood pressure and heart rate of dog.	03		
4	Study of diuretic activity of drugs using rats/mice.	02		
5	DRC of acetylcholine using frog rectus abdominis muscle.	03		
6	Effect of physostigmine and atropine on DRC of acetylcholine using frog rectus	03		
	abdominis muscle and rat ileum respectively.			
7	Bioassay of histamine using guinea pig ileum by matching method.	02		
8	Bioassay of oxytocin using rat uterine horn by interpolation method.	03		
9	Bioassay of serotonin using rat fundus strip by three point bioassay.			
10	Bioassay of acetylcholine using rat ileum/colon by four point bioassay.	03		
	TOTAL	30		

Text Book(s):

Title	Author/s	Publication
Essentials of Medical Pharmacology	K.D.Tripathi.	JAYPEE Brothers Medical
		Publishers (P) Ltd
Handbook of experimental	Kulkarni SK.	Vallabh Prakashan.
pharmacology	Kuikai iii SK.	valiabil i i akasilali.

Reference Book(s):

Title	Author/s	Publication
	Sharma H. L.,	
Principles of Pharmacology	Sharma K. K.,	Paras medical publisher
Fundamentals of Experimental Pharmacology	Ghosh MN	Hilton & Company, Kolkata

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

SEPE3021	GENERAL PHARMACOLOGY II
SEFESUZ1	GENERAL FHARMACOLOGI II
CO 1	Understand the mechanism of drug action and its relevance in the treatment of different
	diseases.
CO 2	Demonstrate isolation of different organs/tissues from the laboratory animals by
	simulated experiments.
CO 3	Demonstrate the various receptor actions using isolated tissue preparation.
CO 4	Appreciate correlation of pharmacology with related medical sciences.

Mapping of CO with PO

SEPE3021	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2	3	3	3	1	2	3	1	3	2	3	2
CO 2	2	2	2	1	2		1	1	2	1	2	2
CO 3	2	2	2	2	1	2	2	1	2	2	2	1
CO 4	2	2	2	2	3	2	2	1	2	2	2	3

Mapping of CO with PSO

SEPE3021	PSO1	PSO2	PSO3
CO 1	3	2	2
CO 2	2	2	2
CO 3	2	2	
CO 4	1	3	3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Pharmacology of drugs acting on cardio vascular	1,2
	system	
2	Pharmacology of drugs acting on cardio vascular	2,4
	system	
3	Pharmacology of drugs acting on urinary system	2,4,5
4	Autocoids and related drugs	2,3,4,5
5	Pharmacology of drugs acting on endocrine system	1,2
6	Pharmacology of drugs acting on endocrine system	2,4

Department of Pharmaceutical Engineering

Course Code: SEPE3030

Course Name: Medicinal Chemistry

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Ех	kaminati	on Scher	ne (Mar	ks)	
Theory	Dragtical Tutorial		Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02		04	40	60	20	30			150

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To know the basics of medicinal chemistry, biochemical and molecular basis of mechanism of action, structure activity relationship including stereo chemical aspects.
- Understand various physicochemical properties of drug molecules in the designing the dosage forms.

	Section I		
Module	Content	Hours	Weightage
No.			in %
1.	Principles of medicinal chemistry History/development of medicinal chemistry, Physicochemical properties in relation to biological action – Ionization, Drug distribution and pKa values, hydrogen bonding, protein binding, chelation, optical and geometrical isomerism, steric effect, redox potential and surface activity. Prodrugs – concepts/application of prodrug design.Introduction to QSAR.	08	20
2.	Medicinal chemistry of drugs acting on CNS Classification, biochemical/molecular basis of mechanism of action, structure activity relationship including stereo chemical aspects, physiochemical properties and synthesis of selected drugs belonging to the class of General anaesthetics, Anxiolytics, Sedatives and Hypnotics, Antipsychotics, Anticonvulsants/antiepileptics, CNS stimulants and Psychedelics, Analgesics, Morphine and related drugs.	07	15
3.	Medicinal Chemistry of Drugs on ANS Classification, biochemical/molecular basis of mechanism of action, structure activity relationship including stereo chemical aspects, and synthesis of selected drugs belonging to the class of adrenergic neurotransmitters, sympathomimetic agents. adrenergic antagonists, cholinergic receptors drugs and	07	15

	related agents, cholinergic blocking agents, ganglionic blocking		
	agents and neuromuscular blockers.		
	Section II		
Module	Content	Hours	Weightage
No.			in %
	Medicinal chemistry of local anaesthetics and diuretics		
	Classification, structural basis of mechanism of action, structure		
4.	activity relationship including stereo chemical aspects,	10	20
	physiochemical properties, design and synthesis of selected		
	drugs belonging to the class of local anaesthetics and diuretics.		
	Medicinal chemistry of antihistaminic agents and		
	eicosanoids		
	Classification, structure basis of mechanism of action, structure		
5.	activity relationship including drugs acting on Histamine	13	30
	receptors, eicosanoids biosynthesis, drug action mediated by		
	eicosanoids, design of eicosanoid drugs, antipyretics, anti-		
	rheumatoid drugs and nonsteroidal anti-inflammatory drugs.		
	TOTAL	45	100

List of Experiments

Sr. No.	Experiment List	Hours
1.	Study on stereo-chemistry of some selected drugs with models and insilico viewer	04
2.	Synthesis of Drugs used in Diabetes involving two or more steps and	04
3.	Synthesis of Drugs used in Anti-Hypertensive drugs involving two or more steps and	04
4.	Synthesis of Drugs used in Gastro-intestinal disorders drugs involving	04
5.	Synthesis of Drugs used in Respiratory disorders drugs involving two	04
6.	Establishing the pharmacopeial standards of the Diabetes drugs	04
7.	Establishing the pharmacopeial standards of the Anti-Hypertensive drugs synthesized.	04
8.	Establishing the Pharmacopeial standards of the Gastro-intestinal	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Organic medicinal and Pharmaceutical	Wilson and	Wolters Kluwer
Chemistry	Giswold's	
Principles of Medicinal Chemistry	Foye's	Wolters Kluwer

Reference Book(s):

Title	Author/s	Publication
Medicinal Chemistry	Burger's	PrenticeHall
Introduction to principles of drug design	Smith and Williams.	Boca Raton

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE3030	MEDICINAL CHEMISTRY
CO 1	Recall the various classes of medicinal compounds
CO 2	Explain the physicochemical properties, steric aspects of drugs and their metabolic pathways
CO 3	Identify the structural requirements of drugs to elicit biological response
CO 4	Design the synthetic routes for medicinal compounds
CO 5	Choose the appropriate medicinal compound for treatment of disease or disorder

Mapping of CO with PO

SEPE3030	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2	2	2	2	2	2	2	3	2	2	2	1
CO 2	2	2	2	2	2	2	3		2	2	2	2
CO 3	2	2	2	2	2	2	2	3	1	2	2	3
CO 4	2	2	2	2	1	3	3	1	2	2	2	1
CO 5	2	2	2	2	3	2	2	3	2	2	3	3

Mapping of CO with PSO

SEPE3030	PSO1	PSO2	PSO3
CO 1	2	2	2
CO 2	2	2	3
CO 3	2	3	3
CO 4	2	3	2
CO 5	3	2	2

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Principles of medicinal chemistry	1,2
2	Medicinal chemistry of drugs on CNS	1,2,3
3	Medicinal chemistry of drugs acting on ANS	1,2,3
4	Medicinal chemistry of local an aesthetics and	1,3,5
	diuretics	
5	Medicinal chemistry of antihistaminic agents and	1,2,3
	eicosanoids	

Department of Pharmaceutical Engineering

Course Code: SEPE3910

Course Name: Industry Aligned Learning-III

Prerequisite Course/s: --

Teaching & Examination Scheme:

Tea	Teaching Scheme (Hours/Week)				Examination Scheme (Marks)					
Theory	Theory Practical		Credit	Theory		Practical		Tutorial		Total
Theory	Fractical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03			03	100						100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• To deliver knowledge regarding utilities used in pharma industries

To provide knowledge of management for safety systems

Course Content:

	Section I						
Module	Content	Hours	Weightage				
No.			in %				
1.	Uses of different Utilities required in Pharmaceutical Industry	10	30				
2.	Importance and Elements of Equipment Qualification	10	20				
	Section II						
Module	Content	Hours	Weightage				
No.			in %				
	Purified water: A basic need to Pharmaceutical Industry,						
3.	Installation, Qualification and Validation of Purified Water	20	30				
	System.						
4.	Safety systems and Procedures for Pharmaceutical Industry	5	20				
	TOTAL	45	100				

Text Book(s):

Title	Author/s	Publication
ICH Guideline Q10	Global Society	Indian Press

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE3910	INDUSTRY ALIGNED LEARNING-III
CO 1	Acquire knowledge regarding various utilities required in Pharmaceutical Industry
CO 2	Ability to identify different kinds of equipment's used in pharmaceuticals industry.
CO 3	Knowledge to established purify water technologies.
CO 4	Identify various safety systems for pharmaceutical industry.

Mapping of CO with PO

11 0												
SEPE3910	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	1	2	1	1	1	3	1	1	2	1		
CO 2	2	2	2	1	3		2	3	2	1	1	2
CO 3	1	3	3	2	3	2	3	3	3	1	1	3
CO 4			1			3	2					

Mapping of CO with PSO

SEPE3910	PSO1	PSO2	PSO3
CO 1	2		1
CO 2	3	2	1
CO 3	3	3	
CO 4		2	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Uses of different Utilities required Pharmaceutical	1,2
	Industry	
2	Importance and Elements of Equipment	1,2,3
	Qualification	
3	Purified water	1,2
4	Safety systems	1,2

Department of Pharmaceutical Engineering

Course Code: SEPE3930

Course Name: Summer Training

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Ex	kaminati	on Schei	ne (Mar	ks)	
Theory	Theory Practical Tutorial	Tutorial	Credit	The	eory	Prac	ctical	Tu	torial	Total
Theory		Credit	CE	ESE	CE	ESE	CE	ESE	Total	
			04			100	00			100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- have first-hand experience the real time situations in industrial scenario.
- get familiar with engineering applications in industrial spectrum
- learn to adapt themselves in professional scenario

Outline of the Course:

Sr. No	Content			
1.	Selection of Companies			
2.	Company Information collection			
3.	Report Writing			
4.	Presentation & Question-Answer			

Course Evaluation:

Sr. No.	Sr. No. Evaluation criteria					
1	Actual work carried & Report Submission	50				
2	2 Final Presentation & Question-Answer session					
	TOTAL					

Course Outcome(s):

After the completion of the course, the following course outcomes will be able to:

SEPE3930	SUMMER TRAINING
CO 1	Adequate with multinational industries and processes.
CO 2	Understand the future prospects in the process allied industries.
CO 3	Understand the requirement of the Industry and their compliances.

Mapping of CO with PO

SEPE3930	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	1	2	1	1	1	3	1	1	2	1		
CO 2	2	2	2	1	3	0	2	3	2	1	1	2
CO 3	1	3	3	2	3	2	3	3	3	1	1	3

Mapping of CO with PSO

SEPE3930	PSO1	PSO2	PSO3
CO 1	2		1
CO 2	3	2	1
CO 3	3	3	

Level of Bloom's Revised Bloom's Taxonomy in Assessment

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Selection of Companies	1,2,3,4
2	Company Information collection	1,2,3,4
3	Report Writing	1,2,3,4
4	Presentation & Question-Answer	1,2,3,4

Report Writing Guidelines

A. Report Format:

15. Title Page (to be provided by the respective supervisor)

The title page of the project shall give the following information in the order listed:

- Full title of the project as approved by the Mentor;
- The full name of the student/Group of students with enrollment number;
- The qualification for which the project is submitted;
- The name of the institution to which the project is submitted;
- The month and year of submission.

16. Project Certification Form

[The form should be duly filled signed by the supervisors.]

17. Acknowledgements

[All persons (e.g. supervisor, technician, friends, and relatives) and organization/authorities who/which have helped in the preparation of the report shall be acknowledged.]

- 18. Table of Contents/Index with page numbering
- 19. List of Tables, Figures, Schemes
- 20. Summary/abstract of the report.
- 21. Introduction/Objectives of the identified problem
- 22. Data Analysis and Finding of Solution
- 23. Application of the identified solution
- 24. Future Scope of enhancement of the Project and Conclusion
- 25. "Learning during Project Work", i.e. "Experience of Journey during Project Duration"
- 26. References(must)
- 27. Bibliography
- 28. Annexures (if any)

B. Guideline for Report Formatting:

- Use A4 size page with 1" margin all sides
- Header should include Project title and footer should contain page number and enrollment numbers
- Chapter Name should be of Cambria font, 20 points, Bold
- Main Heading should be of Cambria font, 14 points, Bold

- Sub Heading should be of Cambria font, 12 points, Bold
- Sub Heading of sub heading should be of Cambria font, 12 points, Bold, Italic
- Paragraph should be of Cambria font, 12 points, no margin at the start of the paragraph
- Line spacing for all content 1.15, before 0, after 0
- No chapter number for reference

Department of Chemical Engineering

Course Code: SECH3510

Course Name: Pharma Technology - API and Formulation

Prerequisite Course(s): --

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
	Theory	Practical	Practical Tutorial	Credit	Theory		Practical		Tutorial		Total
					CE	ESE	CE	ESE	CE	ESE	Total
	03			03	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- Basic knowledge of the design and operation of pharmaceutical units and of the steps of development of dosage forms through to the final product and submission to the health authorities for Production license and marketing.
- Clear the concept and the importance of particle size and particle shape in drug formulation.
- Understand of the mechanism of basic pharmaceutical operations including size reduction, mixing, separation processes, filtration, drying and freeze-drying, its importance in drug formulation and practical application on a laboratory scale.

Section I								
Module No.	Content	Hours	Weightage in %					
1.	Introduction to Basic Pharmaceutical and Fine Chemical Industry Definitions of Basic Pharmaceuticals, Intermediates, Fine Chemicals, Heavy Chemicals, Technology involved in Manufacturing of Pharmaceuticals, Unit Processes in Synthesis, Biochemical Processes in Synthesis.	06	15					
2.	Unit Processes involved in Pharma Industry Study of the Following Chemical Processes (With References to Reagents, Mechanisms, Equipment and Manufacture of Drugs given below): Acylation, Esterification, Alkylation, Amination, Halogenation, Hydrolysis, Nitration, Oxidation and Reduction.	06	10					
3.	Unit Operations involved in Pharma Industry Operation of Reactor, Centrifuge, Dryer, Cooling Tower, Heat Exchanger – Design, Working Principle, Validation and Cleaning Strategies, Powder Processing Area (PPA) – Conditions, Validation and Cleaning processes.	10	25					
Section II								

Module No	Content	Hours	Weightage in %
4.	Solid Formulation Basics of Process Automation of Solid Dosage Form Production, Study of Newer Excipients used in Gastro Retentive, Mucoadhesive Systems and Colon Specific and Sustained Release, Pulsatile Drug Delivery Systems, Formulation Development of Mouth Dissolving Tablets, Taste Masking Formulation, Sublingual and Buccal Formulations.	07	15
5.	Liquid Formulation Study of Advances in Liquid Formulation including Multiple Emulsion, Micro Emulsion including Self Emulsified Drug Delivery Systems and Self Micro Emulsified Drug Delivery Systems.	05	10
6.	Semisolids Formulation Semisolid Formulation with Special Reference to Penetration Enhancers, Emulgels, Semisolids based on Liposomes, Niosomes.	04	10
7.	Inhalation Aerosols Inhalation Products- Types and Clinical Role, Basic Components of Aerosol Formulations, Therapeutic Aerosols, Metered Dose Inhalers, Dry powder Inhalers, Detailed Discussion on Propellants, Package and Filling Technology, Quality Assurance of Components and Formulations	07	15
	TOTAL	45	100

Title	Author/s	Publication
Modern Pharmaceutics - Fourth Edition	Gilbert and S. Banker and	Marcel Decker Series
	Christofer T. Rhodes	
Advanced Pharmaceutics: Physicochemical	Cherng-Ju uim	CRC Press – 2004
principles		
Unit Processes in Pharmacy	Ganderton David	Elsevier Ltd.
The Theory and Practice of Industrial	L. Lachman	CBS Publishers
Pharmacy		

Reference Book(s):

Title	Author/s	Publication
Physical characterization of Pharmaceutical	H. T. Brittain	Marcel-Decker Series
Solids - Volume 70		

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the student will able to

SECH3510	PHARMA TECHNOLOGY - API & FORMULATION
CO 1	Identify basic unit processes and unit operations involved in pharma industry.
CO 2	Relate the different equipment with usage and applications.
CO 3	Differentiate api and formulation in the pharmaceutical industries
CO 4	Apply knowledge of basic science in dosage and formulation to enhance the plant
CO 4	efficiency.

Mapping of CO with PO

SECH3510	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	1	1		-						1		
CO 2	1	1		1						2		1
CO 3	1	1	1	2						2		1
CO 4	1	1		1						2		1

Mapping of CO with PSO

SECH3510	PSO1	PSO2	PSO3
CO 1	1		
CO 2	1		
CO 3		1	1
CO 4		1	1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Basic Pharmaceutical and Fine	1.3
	Chemical Industry	1,2
2	Unit Processes involved in Pharma Industry	1,2
3	Unit Operations involved in Pharma Industry	1,2
4	Solid Formulation	1,2
5	Liquid Formulation	1,2
6	Semisolids Formulation	1,2
7	Inhalation Aerosols	1,2

Department of Chemical Engineering

Course Code: SECH3520

Course Name: Process Auxiliaries and Utilities in Allied industries

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial Cre	Credit	Theory		Practical		Tut	orial	Total
				CE	ESE	CE	ESE	CE	ESE	Total
03			03	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the designing the process plants or creating design layouts of plant.
- understand fundamentals of chemical engineering viz. development of flow diagrams, importance of various design consideration during the development and design of any process.
- rapidly increase advancement of knowledge and relevant importance and application of various process auxiliaries and utilities used in industries.
- deals with the basics as well as advanced understanding of various process auxiliaries and utilities used in chemical plant.

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Process Auxiliaries Basic Considerations and Flow Diagrams in Chemical Engineering Plant Design.	02	05				
2.	Piping Design Selection of Material, Pipe Sizes, Working Pressure, Basic Principles of Piping Design, Piping Drawings, Pipe Installations, Overhead Installations, Process Steam Piping, Selection and Determination of Steam – Pipe Size, Piping Insulation, Application of Piping Insulation, Weather Proof and Fire Resisting Pipe Insulation Jackets, Piping Fittings, Pipe Joints.	10	20				
3.	Valves Types of Valves, Selection Criteria of Valves for various systems.	05	10				
4.	Pumps Types of Pumps, NPSH Requirement, Pump Location, Pump Piping, Pump Piping Support, Process Control and Instrumentation Diagram, Control System Design for Process Auxiliaries.	05	15				
	Section II						
Module	Content	Hours	Weightage				

No.			in %
5.	Process Utilities Process Water: Sources of Water, Hard and Soft water, Requisites of Industrial Water and its Uses, Methods of Water Treatment, Chemical Softening, Demineralization, Resins Used for Water Softening, Water for Boiler, Cooling Purposes, cooling towers, Drinking and Process Water Treatment.	08	15
6.	Steam Steam Generation and its Application in Chemical Process Plants, Distribution and Utilization, Steam Economy, Condensate Utilization, Steam Traps and their Characteristics, Selection and Application, Waste Heat Utilization.	08	15
7.	Compressors and Vacuum Pumps Types of Compressors and Vacuum Pumps and their Performance Characteristics, Methods of Vacuum Development and their Limitations, Materials Handling Under Vacuum, Lubrication and Oil Removal in Compressors and Pumps, Instrument Air.	05	15
8.	Refrigeration System Refrigeration and Chilling Systems, Oil Heating Systems, Nitrogen Systems.	02	5
	TOTAL	45	100

Title	Author/s	Publication
Process Plant layout and Piping Design	Roger Hunt and Ed	PTR Prentice-Hall Inc
Frocess Flant layout and Fiping Design	Bausbacher	FINFIERICE-Hairing
Process utility systems	Jack Broughton	Institution of Chem. Engineers, U.K.

Reference Book(s):

Chemical Engineering Plant Design	F.C. Vibrandt and C.E. Dryden	McGraw Hill, Fifth Edition
Plant design and Economics for	M.S. Peters and Timmerhaus	Mc Graw Hill 3rd Edition
Chemical Engineers		

Web Material Link(s):

• https://nptel.ac.in/syllabus/105102089/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the student will able to

SECH3520	PROCESS AUXILIARIES & UTILITIES IN ALLIED INDUSTRIES
CO 1	Describe overall knowledge about the process plant.
CO 2	Anlayze the importance of process auxiliaries and utilities in process industries.
CO 3	Apply the conceptual design of chemical process plant.
CO 4	Build a bridge between theoretical and practical concepts used for process auxiliaries
CU 4	and utilities in any process industry.

Mapping of CO with PO

SECH3520	PO1	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO 1							2					
CO 2												
CO 3							2					1
CO 4												

Mapping of CO with PSO

SECH3520	PSO1	PSO2	PSO3
CO 1	3	2	3
CO 2	3	1	2
CO 3	3	2	2
CO 4	3		

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Process Auxiliaries	1,2,3,4
2	Piping Design	1,2,3,4,5,6
3	Valves	1,2,3,4
4	Pumps	1,2,3,4
5	Process Utilities	1,2,3,4
6	Steam	1,3,4,5
7	Compressors and Vacuum Pumps	1,2,3,4,5
8	Refrigeration System	1,2,4

Department of Chemical Engineering

Course Code: SECH3530

Course Name: Air Pollution & Control

Prerequisite Course(s): -

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory	Practical	Tutorial Credit		The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03			03	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand various effects of air pollution.
- impart the knowledge on air pollution.
- analyze causes and effects of air pollution.
- familiarize with strategic planning for control of air pollution.

	Section I							
Module No.	Content	Hours	Weightage in %					
1.	Air Pollution Definition of Air Pollution - Sources and Classification of Air Pollutants-Effects of Air Pollution-Global Effects-Air Quality Emission Standards-Sampling of Pollutants in Ambient Air-Stack Sampling.	06	15					
2.	Meteorology and Air Pollution Factors influencing Air Pollution, Wind Rose, Mixing Depths, Lapse Rates and Dispersion, Atmospheric Stability, Plume rise and Dispersion, Prediction of Air Quality, Box Model, Gaussian model, Dispersion Coefficient, Application of Tall Chimney for Pollutant Dispersion.	06	15					
3.	Control of Particulate Pollutants Properties of Particulate Pollution, Particle Size Distribution, Control Mechanism, Dust Removal Equipment, Design and Operation of Settling Chambers, Cyclones, Wet Dust Rubbers, Fabric Filters and ESP.	06	10					
4.	Control of Gaseous Pollutant Process and Equipment for the Removal of Gaseous Pollutants by Chemical Methods – Design and Operation of Absorption and Adsorption Equipment, Combustion and Condensation equipment.	04	10					
	Section II							
Module	Content	Hours	Weightage in %					

5.	Control Of Air Pollution Zoning and Site Selection-Other Management Controls, API Legislation, Automobile Pollution and Control-Emission Standards.	07	15
6.	Urban Air Pollution Sectoral Analysis, Trends in Major Cities of India and Government initiatives.	05	10
7.	Introduction to indoor air pollution	04	10
8.	Global effects of air pollution Green House Effects, Acid Rain and Ozone Layer Depletion, International Agreements for Mitigating Global Air Pollution Effects.	07	15
	TOTAL	45	100

Title	Author/s	Publication
Air pollution	Wark and Warner	Harper & Row, New York.
Air Pollution	M.N.Rao and H.V.N.Rao	McGraw Hill Education
Air pollution	Prof. K.V.S.G. Muralikrishna	Kaushal Publications – Kakinada

Reference Book(s):

An introduction to Air Pollution	R.K. Trivedy and P.K. Goel	B.S. Publications
----------------------------------	----------------------------	-------------------

Web Material Link(s):

• https://nptel.ac.in/syllabus/105102089/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the student will able to

SECH3530	AIR POLLUTION & CONTROL			
CO 1	Design various air pollution control equipment and evaluate its use.			
CO 2	Classify and identify the sources of air pollutants and predict the effects of air pollutant			
	on human health and environment.			
CO 3	Analyze the air quality and relate with air pollution regulation.			
CO 4	Apply and relate the significance of various air pollution dispersion models.			

Mapping of CO with PO

SECH3	3530	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO	1	1	1	1	1								
CO	2	1	1	1	1			2	3		1	1	
СО	3						2				1		
СО	4		1	1	1								

Mapping of CO with PSO

SECH3530	PSO1	PSO2	PSO3
CO 1	2		
CO 2	1	1	1
CO 3			
CO 4			

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Air Pollution	1, 2
2	Meteorology and Air Pollution	1,2,3,6
3	Control of Particulate Pollutants	2, 4
4	Control of Gaseous Pollutant	2, 4
5	Control Of Air Pollution	1,2,5
6	Urban Air Pollution	1,2
7	Introduction to indoor air pollution	1,2
8	Global effects of air pollution	1,2

Department of Chemical Engineering

Course Code: SECH3540

Course Name: Polymer Science & Technology

Prerequisite Course(s): --

Teaching & Examination Scheme:

	Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
	Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
	Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	03			03	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- get knowledge of polymers, polymerization techniques and behavior in polymers.
- explore various types of thermoplastics, thermosetting and elastomers.
- Familiarize with various polymer processing techniques for polymers, rubbers and fibers.
- get knowledge on various testing methods and characterization of polymers.
- get knowledge on specialty polymers.

	Section I					
Module	Content	Hours	Weightage			
No.		Hours	in %			
1.	Introduction to Polymers Polymers, Polymerization, History of polymers, Pioneers in Polymer Science, Chemistry of Polymerization –Addition, Condensation, Coordination Polymerization –Mechanism and Kinetics, Degree of Polymerization, Polymerization Conditions (Bulk, Solution, Precipitation, Suspension, Emulsion, Interfacial), Crystallinity– Polymer Single Crystals, Spherulite Sand Glass Transition Temperature(tg).	07	15			
2.	Thermoplastics, Thermosetting and Elastomers Thermoplastic Polymers - Poly-Olefins - Vinyl Polymers - Polystyrene, PMMA - Pan, Thermoplastic Polymers - Teflon - Polyamides - Polycarbonates and their Applications, Thermosetting Polymers - Phenolic Resins -Polyesters - Epoxies - Polyurethanes and their Applications, Elastomers- Natural rubber - Isoprene Rubber, Synthetic Rubbers - Butadiene Rubber- Butyl Rubber- Styrene Butadiene Rubber, Chloroprene Rubber- Nitrile Rubber - Silicone Rubber.	10	25			
3.	Polymer Processing Processing of Thermoplastics and Thermosetting plastics – Compounding and Processing Aids, Compression Moulding -	05	10			

	Injection Moulding – Extrusion Moulding, Blow Moulding, Rotational Moulding, Transfer Moulding, Processing of Rubbers – Vulcanization, Mastication – Calendaring, Reaction Injection Moulding – Solution		
	Casting – SMC and DMC, Fiber Spinning and Drawing.		
	Section II	l .	
Module No.	Content	Hours	Weightage in %
4.	Testing & Characterization of Polymers Polymer Characterization Tests - Melt Flow Index, Capillary Rheometer Test, Viscosity Test, GPC, Thermal Analysis Techniques - DSC, TGA and TMA, Morphology - SEM, TEM, XRD, Mechanical Properties- Tensile Test, Impact Test, Hardness, Electrical properties -Di-Electric Strength & Di-Electric Constant, Thermal Properties- HDT, Vicat.	13	30
5.	Specialty Polymers Poly-Electrolytes and Ionomers, Conducting Polymers -Electro- Luminescent Polymers, High temperature Polymers and Polymer Blends, Polymer Composites and Nano-Composites, Interpenetrating Polymer Networks, Liquid Crystalline Polymers, Biomedical Polymers.	10	20
	TOTAL	45	100

V R Gowariker, Vasant R. Gowariker, N V Viswanathan, JayadevSreedhar	New Age International, 2nd Edition
Joel R.Fried	PHI, Eastern Economy Edition, 2nd Edition
	Viswanathan, JayadevSreedhar

Reference Book(s):

Text book of Polymer Science	Billmeyer F. W.	3rd edn., Wiley, Singapore, 1984
Speciality Polymers	R.W. Dyson	Chapman and Hall, New York, 1987
Handbook of Plastics Testing Technology	Vishu Shah	Wiley international publication

Web Material Link(s):

• https://nptel.ac.in/courses/113105028/

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.

• End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the student will able to

SECH3540	POLYMER SCIENCE & TECHNOLOGY
CO 1	Elaborate on step growth and chain polymerization with respect to mechanism and
COT	kinetics.
CO 2	Elaborate on the differences between crystalline melting temperature and glass
CO 2	transition temperature, as well as the effect of kinetics on both.
CO 3	Distinguish between absolute and relative methods for molecular weight
60.3	determination.
CO 4	Interpret experimental data and determine parameters such as polymerization rates
CO 4	and copolymer composition.
CO 5	Estimate the solubility of a given polymer in various solvents and blends.

Mapping of CO with PO

SECH3540	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2	1					2	3	1	2		2
CO 2	2	1				3	3	3	1	3		2
CO 3	2	2				2	3		3	2		3
CO 4	2	2				2	1	1	2	3		2
CO 5	2	2				2	3	3	2	3	1	3

Mapping of CO with PSO

SECH3540	PSO1	PSO2	PSO3
CO 1	3	2	1
CO 2	3	3	3
CO 3	3	1	3
CO 4	3	2	2
CO 5	3	2	3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction to Polymers	1,2
2	Thermoplastics, Thermosetting and Elastomers	1,2
3	Polymer Processing	1,2,4
4	Testing & Characterization of Polymers	1,2,4
5	Specialty Polymers	1,2

Department of Pharmaceutical Engineering

Course Code: SEPE3040

Course Name: Chemistry of Natural Products

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Exa	aminatio	n Schem	e (Mark	s)	
Theory Practical	tical Tutorial Cr		The	eory	Practical		Tutorial		Total	
	Flactical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03			03	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• To learn, classify and understand chemistry and structural aspects of medicinal compounds from various natural sources and relate to therapeutic applications

•

	Section I									
Module No.	Content	Hours	Weightage in %							
IVO.	Structural basis of natural products		111 /0							
1.	Chemical and spectral approaches to simple molecules of natural origin. identification of natural products by chromatographic and spectroscopic methods and application of I.R., N.M.R. and Mass spectroscopy in the structural elucidation of organic compounds. Concept of stereoisomerism taking examples of natural products Eg. citral, menthol, camphor, ephedrine, atropine etc.; standardization of traditional drug formulations, chromatographic study of some herbal constituents.	08	20							
2.	Glycosides Classification, biosynthetic studies and basic metabolic pathways, introduction to biogenesis of secondary metabolites, chemistry, general methods of extraction, isolation, chemical tests, isolation, medicinal properties and structural elucidation of sennosides, cardinolides and bufadienolides, digoxin and digitoxin, introduction to scillaren A and ouabein.	08	15							
3.	Alkaloids Classification, biosynthetic studies and basic metabolic pathways, introduction to biogenesis of secondary metabolites, chemistry, general methods of extraction, isolation, chemical tests, isolation and structural elucidation	06	15							

	of Pyridine alkaloids, Tropane alkaloids, Quinoline and Isoquinoline alkaloids, Phenanthrine alkaloids, Indole alkaloids, Imidazole alkaloids, Alkaloid amines, Glycoalkaloid, Xanthine alkaloid.		
	Section II		<u> </u>
Module No.	Content	Hours	Weightage in %
4.	Terpenes and Flavonoids Classification, biosynthetic studies and basic metabolic pathways, introduction to biogenesis of secondary metabolites, chemistry, general methods of extraction, isolation, chemical tests, isolation, medicinal properties and structural elucidation, flavonoids, quercetin; Terpenesspecial isoprene rule, mono, diterpenes, triterpenoids and sesquiterpenes, and structural elucidation of citral, carvone, menthol and camphor; Steroids – cholesterol, colour reactions, reactions of steroids, stigmasterol, β-Sitotsterol, bile acids, ergosterol, diosgenin, solasodine, hecogenin.	12	30
5.	Study of traditional drugs Classification of indigenous drugs traditional drugs, common vernacular names, botanical source, chemical constituents, uses and marketed formulations with ingredients like – Amla, Satavari, Bhilwua, bael, bach, rasna, punarnava, gokhru, shankhapusphi, brahmi adusa, arjuna, lahsun, guggul, gymnema, neem ,tulsi, Shilajit and Spirulina.	11	20
	TOTAL	45	100

Title	Author/s	Publication
Chemistry of Organic Natural Products	0.P. Agarwal	Krishna Prakashan Media
Organic Chemistry of Natural Products	Gurdeep Chatwal	Himalaya Publishing House

Reference Book(s):

Title	Author/s	Publication		
Pharmacognosy	Brady and Tyler.E.	New YorkEllis Horwood 1990		
	G.E. Trease &	Novy Vords Mangal Dalskor 1000		
Pharmacognosy	W.C.Evans.	New York, MarcelDekker 1988		

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

SEPE3040	CHEMISTRY OF NATURAL PRODUCTS
CO 1	Classify extract, isolate and characterize the natural products by chemical tests.
CO 2	Understand the classification, metabolic pathways, metabolites and their structural
	elucidation.
CO 3	To know about the examples of green reactions and future trends in green reaction.
CO 4	To learn the synthesis, psychological properties, isolation medicinal importance and
	other synthetic use of terpenes and alkaloids.

Mapping of CO with PO

SEPE3040	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	1	1	1	1		2	2	1		2	2	1
CO 2	1	1	2	2	3		2	1	1	1	2	
CO 3	1	1	1	1	1		3		2	2	3	2
CO 4	1	1	1	2		2	3		1	2	1	1

Mapping of CO with PSO

SEPE3040	PSO1	PSO2	PSO3
CO 1	2	2	2
CO 2	3	1	2
CO 3	3	3	2
CO 4	3	2	

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Structural Basis Of Natural Products	1,2
2	Glycosides	1,2
3	Alkaloids	1,2,4
4	Terpenes and Flavonoids	1,2,4
5	Study Of Traditional Drugs	1,2

Department of Pharmaceutical Engineering

Course Code: SEPE3050

Course Name: Technology of Solid Dosage forms

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Геаching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	Dractical Tutorial Credit		Practical Tutorial Credit	The	eory	Prac	ctical	Tuto	rial	Total	
Theory	Fractical	Tutoriai	Credit	Greuit	CE	ESE	CE	ESE	CE	ESE	Total
03	02		04	40	60	20	30			150	

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• To provide the concepts of various parameters involved in the formulation and development of various dosage forms.

	Section I								
Module No.	Content	Hours	Weightage in %						
1.	Preformulating studies Study of physical/physicochemical properties of drugs like physical form, particle size, shape, density, wetting, dielectric constant, solubility, dissolution, organoleptic properties and their effect on formulation, stability and bioavailabilty. Study of chemical properties of drugs like hydrolysis, oxidation, reduction, racemisation, polymerization etc. and their influence on formulation. Stability Studies: Basic concept and objectives of stability study.	08	20						
2.	Liquid and semi solid dosage forms Introduction, types of additives used, vehicles, stabilizers, preservatives, emulsifying agents, solubilizers, colors, flavours, manufacturing, packaging and evaluation of solutions, suspensions and emulsions. Definitions, types, mechanisms of drug penetration through skin, factors influencing penetration, semisolid bases and their selection. General formulation/manufacture of semisolids, clear gels, evaluation and packaging.	07	10						

	TOTAL	45	100
5.	Pharmaceutical Aerosols Definition, propellants, general formulation, manufacturing, packaging methods, pharmaceutical applications and evaluation.	09	20
4.	Parenteral Products Preformulation factors, routes of administration, water for injection, pyrogenicity, non-aqueous vehicles, isotonicity & methods of its adjustment. Formulation details, containers and closures and their selection. Prefilling treatment, washing the container and closers, preparation of solution and suspension, filling, closing of ampoules, vials infusion fluids, lyophilization, preparation of sterile powders, equipment for large scale manufacture and evaluation of parenteral products. Aseptic techniques: Source of contamination, methods of prevention, design of aseptic area, laminar flow bench, air handling units, services and maintenance.	14	30
No.	Parantaral Products		in %
Module	Content	Hours	Weightage
	Section II		<u> </u>
3.	Solid dosage forms Classification of different types of tablets, tablets equipments, granulation technology on large scale by various techniques. Tablets tooling, different types of tablets compression machinery, processing problem of tablets and evaluation of tablets. Coating of tablets: Types of coating, Sugar coating, film forming materials, formulation of coating solution, equipment for coating, film defects and evaluation of coated tablets. Advantages & disadvantages of capsule dosage form, extraction of gelatin, production of hard gelatin capsules, size of capsules and method of capsule filling. Soft gelatin capsule, Nature of capsule shell & capsule content.	07	20

List of Experiments

S.no	Experiment list	Hours				
1	Preformulation studies on prepared granules.	02				
2	2 Preparation and evaluation of suspensions.					
3	3 Preparation and evaluation of emulsions.					
4	4 Preparation and evaluation of creams.					
5	Preparation and evaluation of ointments.	04				
6	6 Preparation and evaluation of injections.					
7	7 Manufacture and evaluation of granules.					
8	Formulation and filling of hard gelatin tablets.	04				
	TOTAL	30				

Title	Author/s	Publication
The Science of Dosage Form Design	Aulton, Michael E.	2 nd Ed., Churchill Livingstone, 2002.
	H. A. Liberman,, L.	Vol. 1,2 and 3, 2 nd Edition Marcel Dekke
	Lachman, and J. B.	r. 1989.
Pharmaceutical dosage forms: Tablet	Schwartz	1, 1909.

Reference Book(s):

Title	Author/s	Publication
"Pharmaceutical Dosage Forms:		Vol.1-3, 2nd Ed., Marcel Dekker,
Parenteral Medications"	Avis, K.E. et al.	2005.
	Libermann, H.A. et	Vol.1-3, 2nd Ed., Marcel Dekker,
" Pharmaceutical Dosage Forms : Tablets"	al.	2005.

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

SEPE3050	TECHNOLOGY OF SOLID DOSAGE FORMS
CO 1	Understand the factors influencing the development of various dosage forms.
CO 2	Understand the formulation concepts and evaluate different dosage forms to meet out
	the compendial requirements.
CO 3	Understand various physicochemical properties of drug molecules in the designing the
	dosage form.
CO 4	Appreciate physicochemical properties of drug molecules in formulation research and
	development.

Mapping of CO with PO

SEPE3050	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	1	2	3	2	3	2	3	3	3	2	1	2
CO 2		2	2	2	3	3	3		2	3	2	1
CO 3	2	3	3	3	1	2	3	3	2	2	2	3
CO 4	2	3	3	2	3	2		3	3	2	2	3

Mapping of CO with PSO

SEPE3050	PSO1	PSO2	PSO3
CO 1	3	2	3
CO 2	3	2	3
CO 3	2	3	3
CO 4	2	3	3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Preformulation Studies	1,2
2	Liquids And Semi – Solid Dosage Forms	1.2
3	Solid Dosage Forms	2,4,5
4	Parenteral Products	2,4,5
5	Pharmaceutical Aerosols	1,2,3

Department of Pharmaceutical Engineering

Course Code: SEPE3060

Course Name: Quality Control and Quality Assurance-Instrumentation & Validation Process

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03			03	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the importance of quality
- learn about ISO management systems
- know the tools for quality improvement
- analyze the issues in quality

	Section I					
Module No.	Content	Hours	Weightage in %			
1.	Introduction Concept and evolution and Scopes of Quality Control and Quality Assurance, Good Laboratory Practice, GMP, Overview of ICH Guidelines - QSEM, with special emphasis on Q series guidelines. Good Laboratory Practices: Scope of GLP, Definitions, Quality Assurance Unit, Protocol for Conduct of Non-Clinical Testing, Control on Animal House, Report Preparation and Documentation. CPCSEA Guidelines	07	14			
2.	Inspection Convention cGMP Guidelines according to schedule M, USFDA (inclusive of CDER and CBER) Pharmaceutical Inspection Convention(PIC), WHO and EMEA Covering: Organization and Personnel Responsibilities, Training, Hygiene and Personal Records, Drug Industry Location, Design, Construction and Plant Lay Out, Maintenance, Sanitation, Environmental Control, Utilities and Maintenance of Sterile Areas, Control of Contamination and Good Warehousing Practice.	07	18			
3.	Quality Control Analysis of Raw Materials, Finished Products, Packaging Materials, In Process Quality Control (IPQC), Developing Specification (Ich Q6 And Q3), Purchase Specifications and Maintenance of Stores for Raw Materials. In Process Quality Control and Finished Products Quality Control for Following Dosage Forms in Pharma Industry according to Indian, US and British Pharmacopoeias: Tablets, Capsules, Ointments,	08	18			

	Suppositories, Creams, Parenterals, Ophthalmic and Surgical Products						
	(How to Refer Pharma Copoeias).						
Section II							
Module No.	Content	Hours	Weightage in %				
4.	Documentation Documentation in Pharmaceutical Industry: Three tier documentation, Policy, Procedures and Work Instructions, and Records (Formats), Basic Principles- How to Maintain, Retention and Retrieval etc. Standard Operating Procedures (How to write), Master Batch Record, Batch Manufacturing Record, Quality Audit Plan and Reports. Specification and Test Procedures, Protocols and Reports. Distribution Records. Electronic Data Handling. Concepts of Controlled and Uncontrolled Documents. Submission documents for regulators DMFs, as Common Technical Document an Electronic Common Technical Documentation (CTD, eCTD). Concept of regulated and non regulated markets.	12	25				
5.	Manufacturing Operations and Controls Sanitation of Manufacturing Premises, Mix-Ups and Cross Contamination, Processing of Intermediates and Bulk Products, Packaging Operations, IPQC, Release of Finished Product, Process Deviations, Charge-In of Components, Time Limitations on Production, Drug Product Inspection, Expiry Date Calculation, Calculation of Yields, Production Record Review, Change Control, Sterile Products, Aseptic Process Control, Packaging, Reprocessing, Salvaging, Handling of Waste and Scrap Disposal. Introduction, Scope and Importance of Intellectual Property Rights. Concept of Trade Mark, Copyright and Patents.	11	25				
	TOTAL	45	100				

Title	Author/s	Publication
Quality Assurance Guide by organization of	D H Shah	3 rd revised edition, Volume I &
Pharmaceutical Procedures of India	D II Silali	II, Mumbai, 1996.
How to Practice GMP's	P P Sharma,	Vandana Publications, Agra, 1991.

Reference Book(s):

Title	Author/s	Publication
Quality Assurance of Pharmaceuticals- A compendium		WHO Publications, 1999
of Guide lines and Related materials Vol I & II, 2nd		
edition		
Good laboratory Practice Regulations –, Volume 38,	Allen F. Hirsch	Marcel Dekker Series,
		1989

Web Material Link(s):

• www.pharmaguide.com

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration and average of the same will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Course Outcome(s):

After the completion of the course, the student will able to

	r				
SEPE3060	QUALITY CONTROL AND QUALITY ASSURANCE - INSTRUMENTATION AND				
SEF E3000	VALIDATION PROCESS				
CO 1	Analyze importance of quality control and quality assrance roles in process industries.				
CO 2	Discover about iso management systems and their applications for qc qa laboratories.				
CO 3	Execute tools for quality improvement in the research and development field.				
CO 4	Analyze issues in quality control and process.				
CO 5	Predict quality evaluation of various products generated by chemical process industries.				

Mapping of CO with PO

SEPE3060	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012
CO 1	1		1	1	1	2	1	1	2	1	1	2
CO 2	1	1		2	1	2	1	1	2	1	2	1
CO 3		1	1	1	1		1	1		2	3	2
CO 4	1	1	1	1	1		1	3	1	1	2	1
CO 5		2	1	2	1	2	2	-	2	2	2	1

Mapping of CO with PSO

SEPE3060	PSO1	PSO2	PSO3
CO 1	2	2	2
CO 2	1	1	1
CO 3	1		1
CO 4		1	1
CO 5	3	2	1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Introduction	1,2
2	Inspection Convention	1,2
3	Quality Control	1,2
4	Documentation	1,2
5	Manufacturing Operations and Controls	1,2

Department of Pharmaceutical Engineering

Course Code: SEPE3920

Course Name: Industry Aligned Learning-IV

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Examination Scheme (Marks)					
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total
Theory	Practical	i i utoriai	Credit	CE	ESE	CE	ESE	CE	ESE	
03			03	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

• Understand various 5S system.

• Know the principles of AHU/HVAC.

Course Content:

	Section I						
Module	Content	Hours	Weightage				
No.			in %				
1.	Housekeeping and 5S System as a culture for sustainable business	25	25				
2.	Installation, Qualification and Validation of AHU/HVAC/Dust & Vapor Extraction System	10	25				
	Section II						
Module	Content	Hours	Weightage				
No.			in %				
3.	Types of Maintenance: Breakdown Maintenance, Preventive Maintenance, Predictive Maintenance	10	50				
	TOTAL	45	100				

Text Book(s):

Title	Author/s	Publication
ICH Guideline Q10	Global Society	Indian Press

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE3920	INDUSTRY ALIGNED LEARNING-IV						
CO 1	Acquire knowledge regarding 5S for sustainable business.						
CO 2	Ability to identify different kinds of AHU.						
CO 3	Knowledge to established energy conservation in pharmaceutical industry.						
CO 4	Identify various, Breakdown Maintenance, Preventive Maintenance, Predictive						
	Maintenance.						

Mapping of CO with PO

11 0												
SEPE3920	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1			1	1			3	1	1	2	2	1
CO 2	1	1	2	1	1	2	1	1	1	1	2	1
CO 3	1	1	1	1	1		2		2	1	2	1
CO 4		1	1	1	1		1	3	2	1	1	1

Mapping of CO with PSO

SEPE3920	PSO1	PSO2	PSO3
CO 1			2
CO 2	2	2	
CO 3	3	2	1
CO 4	2	2	1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Housekeeping and 5S System as a culture for	1,2,3
	sustainable business	
2	Installation, Qualification and Validation of	1,2,3,4
	AHU/HVAC/Dust & Vapor Extraction System	
3	Types of Maintenance: Breakdown Maintenance,	1,2,4
	Preventive Maintenance, Predictive Maintenance	

Department of Chemical Engineering

Course Code: SECH3052

Course Name: Chemical Reaction Kinetics - I

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Ex	aminati	on Schen	ne (Mark	arks)					
Theory	Practical	Tutorial	Credit	The	eory	Prac	ctical	Tut	orial	Total			
THEOLY	Fractical	Tutoriai	Creuit	CE	ESE	CE	ESE	CE	ESE	Total			
03	02		04	40	60	20	30			150			

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- understand the basic principles of kinetics and chemical reaction engineering by the application of Stoichiometry, thermodynamics and mathematical analysis.
- utilize this knowledge in the design of industrial chemical reactors.

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Fundamentals of Reaction Engineering Overview of chemical reaction engineering, Rate of Reaction, Elementary and non-elementary homogeneous reactions, Molecularity and order of reaction, Mechanism of reaction, Temperature dependency from thermodynamics, Collision and Activated complex theories.	04	10
2.	Rate Laws, Kinetics and Mechanisms of Homogeneous and Heterogeneous Reactions Kinetic models for non-elementary reactions, Testing kinetic models, Temperature dependent term of rate equations from Arrhenius theory and comparison with collision and transition state theory, Activation energy and temperature dependency, Predictability of reaction rate from theory.	06	10
3.	Analysis of Rate Data Integral and differential methods for analyzing kinetic data, interpretation of constant volume reactor, zero, first, second and third order reactions, half life period, irreversible reaction in parallel and series, catalytic reaction, auto catalytic reaction, reversible reactions.	06	10
4.	Introduction to Reactor Design Interpretation of variable volume batch reactions for zero, first and second order reactions, design equation for batch, continuous stirred tank, plug flow reactors for isothermal reaction.	06	20

	Section II		
Module	Content	Hours	Weightage in %
5.	Design of industrial reactors Optimum reactor size, plug flow/mixed flow reactors in series and parallel, recycle reactor.	07	15
6.	Design of reactors for single and parallel reaction Size comparison of single reactors, multiple reactor systems, recycles reactor and autocatalytic reactions. Introduction to multiple reactions, qualitative and quantitative treatment of product distribution and of reactor size, the selectivity.	08	15
7.	Residence time distributions Residence time distribution of fluids in vessels, E, F and C curves, Dispersion model, Tank in series model. Non-Isothermal PFR and CSTR, Safety issues in Non-Isothermal Reactors.	08	20
	TOTAL	45	100

List of Experiments:

Sr. No.	Name of Practical	Hours
1.	To study the interpretation of Batch Reactor Data.	02
2.	To determine energy of activation of reaction between ethyl acetate with sodium hydroxide.	04
3.	To determine reaction equilibrium constant of reaction of acetic acid with ethanol.	04
4.	To measure the kinetics of a reaction between ethyl acetate and sodium hydroxide under condition of excess ethyl acetate at room temperature.	04
5.	To determine the kinetics of the reaction between ethyl acetate and sodium hydroxide at room temperature by the integral method of analysis.	04
6.	To determine the kinetics of the reaction between ethyl acetate and sodium hydroxide at room temperature by the differential method of analysis.	04
7.	To determine reaction equilibrium constant of reaction between acetic acid with ethanol.	04
8.	To study the kinetics of saponification reaction between acetic acid and sodium hydroxide in a batch reactor and establish the rate law.	04
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Chemical Engineering Kinetics - 3rd Edition	J. M. Smith	McGraw-Hill (1990)
Chemical Reaction Engineering - 3rd Edition	O. Levenspiel	John Wiley (1998)

Reference Book(s):

Title	Author/s	Publication
Elements of Chemical Reaction Engineering	H. Scott Fogler	Prentice Hall of India Pvt. Ltd
The Engineering of Chemical Reactions	L. D. Schmidt	Oxford Press

Course Evaluation:

Theory:

- Continuous Evaluation consists of two tests each of 30 marks and 1 Hour of duration, which will be converted to 30 marks.
- Faculty evaluation consists of 10 marks as per the guidelines provided by the course coordinator.
- End Semester Examination consists of 60 marks.

Practical:

- Continuous Evaluation consists of performance of Practical which will be evaluated out of 10 marks for each practical and average of the same will be converted to 10 marks.
- Internal Viva consists of 10 marks.
- Practical performance/quiz/drawing/test of 15 marks during End Semester Exam.
- Viva/Oral presentation consists of 15 marks during End Semester Exam.

Course Outcome(s):

After the completion of the course, the student will able to

SECH3052	CHEMICAL REACTION KINETICS-I					
CO 1	Classify the concept of reactor design for chemical process industries.					
CO 2	Analyze kinetics and rate law based on experimental data obtained from the laboratory.					
CO 3	Perform calculations on plug, mixed, and batch reactors for homogeneous and					
CO 3	heterogeneous reactions.					
CO 4	Develop skills to choose, design and scale the right kind of reactor for a given reaction.					

Mapping of CO with PO

SECH3052	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2	2	2	2	1		1			1	1	
CO 2	2	2	1	2	1		1			1	1	
CO 3	1	2	1	2	1		1			1	1	
CO 4	2	2	2	2	1		1			1	1	

Mapping of CO with PSO

SECH3052	PSO1	PSO2	PSO3
CO 1	2	3	3
CO 2	2	3	3
CO 3	2	3	3
CO 4	2	3	3

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Fundamentals of Reaction Engineering	2,3
2	Rate Laws, Kinetics and Mechanisms of	2,3,5
2	Homogeneous and Heterogeneous Reactions	2,3,3
3	Analysis of Rate Data	4,5,6

4	Introduction to Reactor Design	1,2,4
5	Design of industrial reactors	2,5,6
6	Design of reactors for single and parallel reaction	5,6
7	Residence time distributions	1,2,4,6

FOURTH YEAR B. TECH.

P P SAVANI UNIVERSITY

SCHOOL OF ENGINEERING

TEACHING & EXAMINATION SCHEME FOR B. TECH. PHARMACEUTICAL ENGINEERING PROGRAMME AY: 2022-23

	06					Гeaching Scheme				Examination Scheme					
Sem	Course Code	Course Title	Offered By	Contact Hours			Credit	Theory		Practical		Tutorial		Total	
	Couc		Бу	Theory	Practical	Tutorial	Total	Crean	CE	ESE	CE	ESE	CE	ESE	Total
	SEPE4010	Regulatory Requirements in Pharmaceutical Industries	PE	4	0	0	4	4	40	60	0	0	0	0	100
	SEPE4020	Pharmaceutical Instrumental Analysis	PE	3	2	0	5	4	40	60	20	30	0	0	150
	SEPE4030	Dosage Formulation Design	PE	3 0		0	3	3	40	60	0	0	0	0	100
7	SEPE4040	Computer Applications in Pharmaceutical Engineering	PE	3	2	0	5	4	40	60	50	0	0	0	150
	SEPE4910	Industry Aligned Learning-V	PE	3	0	0	3	3	100	0	0	0	0	0	100
	SEPD4010	Creativity, Problem Solving & Innovation	SEPD	3	0	0	3	3	100	0	0	0	0	0	100
	SEPE4920	Project/Summer Internship	PE		5		0	5	0	0	100	0	0	0	100
						T	Т	T	1						
					Total	23	26							800	
8	SEPE4930	Project / Training	PE		17		20	17	0	0	200	300	0	0	500
					Total 2										500

Department of Pharmaceutical Engineering

Course Code: SEPE4010

Course Name: Regulatory Requirements in Pharmaceutical Industries

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)							
Theory	owy Dragtical Tutorial		rial Credit	The	eory	Prac	ctical	Tuto	rial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
04			04	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To provide basics of regulatory requirements of pharmaceuticals.
- To provide basics of good manufacturing practices, scientific and risk-based product development approached, validations and regulatory requirements of pharmaceuticals

	Section I		
Module	Content	Hours	Weightage
No.			in %
	Schedule governing pharmaceutical product		
1.	development	05	10
	(e.g. Schedule M, Schedule Y).		
2.	ICH guidelines Q8(R2), Q9, Q10, Q11 and Q12	05	05
3.	Documentation for pharmaceuticals	03	05
	Introduction to regulatory aspects of pharmaceuticals		
	• Introduction to Regulatory aspects of pharmaceuticals,		
	need, advantages and limitation		
4.	Introduction to major regulatory bodies worldwide	10	15
	Rationale for regulatory harmonization and introduction		
	of ICH		
	Introduction to CTD Modules		
5.	Drug Master file (DMF)	02	05
	Regulatory procedure for pharmaceutical product		
6.	market approval as per USFDA guidelines: Investigational	05	10
О.	New Drug Application (IND)- filing, review, approval process	05	10
	and representative case studies		
	Section II		
Module	Content	Hours	Weightage
No.			in %
	Regulatory procedure for pharmaceutical product		
	market approval as per USFDA guidelines:		

7.	New Drug Application (NDA) [505 (b) (1) and (b) (2)]- filing, review, approval process and representative case studies. Abbreviated New Drug Application (ANDA) 505 (j)- filing, review, approval process and representative case studies	12	20
8.	Regulatory procedure for pharmaceutical product market approval as per USFDA guidelines: New Animal Drug Application (NADA)- filing, review, approval process and representative case studies. Biological License Application (BLA)- filing, review, approval process and representative case studies	13	20
9.	Comparison of Indian, European and rest of the world Regulatory procedure for pharmaceutical product market approval in comparison to USFDA guidelines	05	10
	TOTAL	45	100

Title	Author/s	Publication
Modern Pharmaceutics	G. S. Banker	New York, Marcel Dekker 1990
Fundamentals of Pharmacy	Blome H. E.	Philadelphia, Fea and Febiger, 1985

Reference Book(s):

Title	Author/s	Publication
Pharmaceutical Production Facilities:		
Design and Applications	G. C. Cole	New York Ellis Horwood 1990
Drug Delivery Devices: Fundamentals and	Tyle	New York, Marcel Dekker 1988
Applications	i yie	

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

SEPE4010	REGULATORY REQUIREMENT IN PHARMACEUTICAL INDUSTRIES
CO 1	Explain the regulatory pathways for new drug application and generic product
	development.
CO 2	Exposure to impact of regulatory statutes on process development.
CO 3	Explain Drugs and Cosmetics act, Drug price control order and regulations therein.
CO 4	Explain the regulatory pathways for new drug application and generic product
	development

Mapping of CO with PO

SEPE4010	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	1	2	2	2	2	2	1	1	2		1	2
CO 2	1	2	1	2	1	2		1	3	2	2	
CO 3	1	2		1	1	2	2		2	1	2	1
CO 4	2	1	2	2	2		2	1	3	1	2	3

Mapping of CO with PSO

SEPE4010	PSO1	PSO2	PSO3
CO 1	3	2	2
CO 2	1	2	1
CO 3	3	1	1
CO 4	1	1	2

1: Remember	2: Understand	3: Apply		
4: Analyze	5: Evaluate	6: Create		

Module No	Content	RBT Level
1	Schedule governing pharmaceutical product	1,2
	development	
2	ICH guidelines	1,2
3	Documentation for pharmaceuticals	1,2,4
4	Introduction to regulatory aspects of	1,2,4
	pharmaceuticals	
5	Drug Master file (DMF)	1,2
6	Regulatory procedure for pharmaceutical product	1,2,3,4,5
	market approval as per USFDA guidelines	
7	Regulatory procedure for pharmaceutical product	1,2,3,4,5
	market approval as per USFDA guidelines	
8	Regulatory procedure for pharmaceutical product	1,2,3,4,5
	market approval as per USFDA guidelines	
9	Comparison of Indian, European and rest of the	2,5
	world Regulatory procedure	

Department of Pharmaceutical Engineering

Course Code: SEPE4020

Course Name: Pharmaceutical Instrumental Analysis

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)					Examination Scheme (Marks)					
Theory	Practical	Tutorial	Credit	The	eory	Practical Tutoria		orial	Total	
Theory	Practical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03	02		04	40	60	20	30			100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To know the application of instrumental methods in qualitative and quantitative analysis of drugs.
- To know the knowledge on the principles and instrumentation of spectroscopic and chromatographic technique.

Course Content:

	Section I		
Module No.	Content	Hours	Weightage in %
1.	UV Visible spectroscopy Electronic transitions, chromophores, auxochromes, spectral shifts, solvent effect on absorption spectra, Beer and Lambert's law, Derivation and deviations. Instrumentation - Sources of radiation, wavelength selectors, sample cells, detectors- Photo tube, Photomultiplier tube, Photo voltaic cell, Silicon Photodiode. Applications - Spectrophotometric titrations, Single component and multi component analysis	10	15
2.	Fluorimetry Theory, Concepts of singlet, doublet and triplet electronic states, internal and external conversions, factors affecting fluorescence, quenching, instrumentation and applications	05	15
3.	IR spectroscopy Introduction, fundamental modes of vibrations in poly atomic molecules, sample handling, factors affecting vibrations Instrumentation - Sources of radiation, wavelength selectors, detectors - Golay cell, Bolometer, Thermocouple, Thermister, Pyroelectric detector and applications Flame Photometry-Principle, interferences, instrumentation and applications Atomic absorption spectroscopy- Principle,	07	20

	interferences, instrumentation and applications.								
	Nepheloturbidometry- Principle, instrumentation and applications								
	Section II								
Module	Content	Hours	Weightage						
No.			in %						
	Gas chromatography - Introduction, theory, instrumentation,								
	derivatization, temperature programming, advantages,								
4.	disadvantages and applications. High performance liquid	80	20						
	chromatography (HPLC)-Introduction, theory,								
	instrumentation, advantages and applications.								
	Introduction to chromatography								
	Adsorption and partition column chromatography-	10	20						
5.	Methodology, advantages, disadvantages and applications.								
3.	Thin layer chromatography- Introduction, Principle,	10	20						
	Methodology, Rf values, advantages, disadvantages and								
	applications.								
	Ion exchange chromatography- Introduction, classification,								
6.	ion exchange resins, properties, mechanism of ion exchange	05	10						
U.	process, factors affecting ion exchange, methodology and	US	10						
	applications.								
	TOTAL	45	100						

List Of Experiments

Sr. No.	1								
	Determination of absorption maxima and effect of solvents on								
1.	absorption	04							
2.	Estimation of dextrose by colorimetry	04							
	Estimation of sulfanilamide by colorimetry								
4.	Simultaneous estimation of ibuprofen and paracetamol by UV	04							
5.	Assay of paracetamol by UV- Spectrophotometry	04							
6.	Estimation of quinine sulfate by fluorimetry	04							
	Study of quenching of fluorescence	04							
8.	Determination of sodium by flame photometry	02							
	TOTAL	30							

Text Book(s):

Title	Author/s	Publication
Instrumental Methods of Chemical	B.K Sharma	Nirali Publications
Analysis		
Organic spectroscopy	Y.R Sharma	Penton Publications

Reference Book(s):

Title	Author/s	Publication
Organic spectroscopy	William Kemp	Zort Press

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE4020	PHARMACEUTICAL INSTRUMENTAL ANALYSIS									
CO 1	Understand the interaction of matter with electromagnetic radiations and its									
	pplications in drug analysis.									
CO 2	Understand the chromatographic separation and analysis of drugs									
CO 3	Perform quantitative & qualitative analysis of drugs using various analytical									
	instruments.									
CO 4	understand selected instrumental analytical techniques (spectroscopic and									
	chromatographic methods) and differentiate with volumetric analysis.									

Mapping of CO with PO

SEPE4020	P01	PO2	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	1	1	1	1	1	2	2	1	2	1	1	1
CO 2	1	2	1	1	3			1		2		2
CO 3	1	1	1	2	1	2	2		1	2	3	2
CO 4	2	2	2	2	2	2	1	1	2	1	1	1

Mapping of CO with PSO

SEPE4020	PSO1	PSO2	PSO3
CO 1	2	2	2
CO 2	2	2	
CO 3	1	1	1
CO 4	2	2	2

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	UV Visible spectroscopy	1,2
2	Fluorimetry	1,2,5
3	IR spectroscopy	1,5
4	Gas chromatography	1,3,5
5	Introduction to chromatography	1,2
6	Ion exchange chromatography	1,2,5

Department of Pharmaceutical Engineering

Course Code: SEPE4030

Course Name: Dosage Formulation Design

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Examination Scheme (Marks)							
Theory	Practical	Tutorial Credit		The	eory	Prac	ctical	Tuto	rial	Total
Theory	Practical	Tutorial	Credit	CE	ESE	CE	ESE	CE	ESE	Total
03			03	40	60					100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To provide basics of regulatory requirements of pharmaceuticals.
- To provide basics of good manufacturing practices, scientific and risk-based product development approached, validations and regulatory requirements of pharmaceuticals

Course Content:

	Section I						
Module No.	Content	Hours	Weightage in %				
1.	Preformulation studies: a) Study of physical properties of drug like physical form, particle size, shape, density, wetting, dielectric constant, dissolution and organoleptic property and their effect on formulation, stability and bioavailability. b) Study of chemical properties of drugs like hydrolysis, oxidation, reduction, polymorphisms, racemization, polymerization etc., and their influence on formulation and stability of products. c) Study of prodrugs in solving problems related to stability, bioavailability and elegance of formulations.	10	20				
2.	Pharmaceutical necessities: Study of following adjuvant in pharmaceutical products: Natural Gums, bio degradable polymers, semi-synthetic cellulosic derivatives, and polymers for achieving modified drug release.	06	15				
3.	Stability of pharmaceuticals: a) Kinetic principles and stability testing: Reaction rate and order, acid base catalysis, decomposition reactions and stabilization of pharmaceuticals. b) Stability of formulation, factors affecting formulation stability, MKT, climatic zones, matrixing and bracketing instability study, accelerated stability testing, real time stability. Current WHO, USFDA and	06	15				

	stability testing as per ICH guidelines for pharmaceutical drug substances and drug products. c) Product stability: Requirements, shelf-life, overages, containers, closures. d) Overage calculations Section II		
Module	Content	Hours	Weightage
No.			in %
	Biopharmaceutics:		
4.	a) Introduction to biopharmaceutics and its role in formulation development. b) Passage of drugs across biological barriers (passive diffusion, active transport, facilitated diffusion and pinocytosis. c) Factors influencing absorption, - physiochemical, physiological and pharmaceutical. d) Drug distribution in the body, plasma protein binding and drug excretion	08	20
5.	Bioavailability and Bioequivalence: a) Measures of bioavailability, Cmax, tmax and area under the curve (AUC). b) Design of single dose bio-equivalence study and relevant statistics. c) Review of regulatory requirements for conduction of bioequivalent studies	07	15
6.	Introduction to BCS and dissolution study: Definition: BCS, BDDCS (Biopharmaceutical Drug Disposition Classification System), Dissolution mechanisms, Factors affecting dissolution, Intrinsic dissolution rate measurement, Dissolution apparatus for various dosage forms, Dissolution profile comparison using model independent method (similarity factor, dissimilarity factor).	08	15
	TOTAL	45	100

Text Book(s):

Title		Author/s	Publication
Applied	Biopharmaceutics and	Leon Shargel, Susanna Wu-Pong	McGraw-Hill
Pharmacokine	etics	and Andrew B. C. Yu.	Education, 2015
The Theory	and Practice of Industrial	L Lachman, H Lieberman and J	CBS Publishers &
Pharmacy		Kanig	Distributors

Reference Book(s):

Title	Author/s	Publication
		Technomic Publishing
		Company, Inc., New Holland
		Avenue, Lancaster,
Pharmaceutical Preformulation	Carstensen JT	Pennysylvania, USA
	Linda A. Felton	Mack Publishing Company,
Remington's Pharmaceutical Sciences	Liliua A. Felton	Easton, Pennsylvania

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of two assignment which consists of 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After completion of the course, the students will be able to:

SEPE4030	DOSAGE FORMULATION DESIGN
CO 1	Classify different dosage forms and apply principles of pharmaceutical science in
	formulation and dispensing the various dosage forms.
CO 2	Explain various unit operations in the design and manufacture of dosage forms and
	describe preventive measures of corrosion and concept of fluid flow
CO 3	Develop dosage form and related concern for design of capsule dosage form.
CO 4	Evaluate the quality of different dosage form as per I.P. monographs.

Mapping of CO with PO

SEPE4030	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2	2	2	1	1	3	1	3	3	3	2	3
CO 2	2	1	2	2	3	3	3	3	3	3	2	3
CO 3	2	1	2	2	3	3	3	3	3	3	3	3
CO 4	2		1	1	3	3	1	3	3	3		3

Mapping of CO with PSO

SEPE4030	PSO1	PSO2	PSO3
CO 1	3	3	3
CO 2	3	3	3
CO 3	3	3	3
CO 4		2	2

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Preformulation studies	1,2,3
2	Pharmaceutical necessities	1,2,4
3	Stability of pharmaceuticals	1,2,4
4	Biopharmaceutics	1,2,4,5
5	Bioavailability and Bioequivalence	1,2,5
6	Introduction to BCS and dissolution study	1,2,3,4,5

Department of Pharmaceutical Engineering

Course Code: SEPE4040

Course Name: Computer Application in Pharmaceutical Engineering

Prerequisite Course/s: --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)			Teaching Scheme (Hours/Week) Examination Scheme (Marks)									
Theory	owy Dragtical Tutorial Crad		matical Tutorial Credit		Practical Tutorial Credit		eory	Prac	ctical	Tut	orial	Total
Theory	Tractical	Tutoriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total		
03	02		04	40	60	20	30			150		

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To know the introduction Database, Database Management system, computer application in clinical studies and use of databases.
- know the various applications of databases in pharmacy

Course Content:

	Section I		
Module No.	Content	Hours	Weightage in %
1.	Number system : Binary number system, Decimal number system, Octal number system, Hexadecimal number systems, conversion decimal to binary, binary to decimal, octal to binary etc, binary addition, binary subtraction – One's complement, Two's complement method, binary multiplication, binary division.	10	20
2.	Concept of Information Systems and Software: Information gathering, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project.	10	20
3.	Web technologies : Introduction to HTML, XML, CSS and Programming languages, introduction to web servers and Server Products Introduction to databases, MYSQL, MS ACCESS, Pharmacy Drug database.	03	10
	Section II		
Module No.	Content	Hours	Weightage in %
4.	Application of computers in Pharmacy – Drug information storage and retrieval, Pharmacokinetics, Mathematical model in Drug design, Hospital and Clinical Pharmacy, Electronic Prescribing and discharge (EP) systems, barcode medicine identification and automated dispensing of drugs, mobile	10	20

	TOTAL	45	100
	System(TIMS)		
6.	6. management System (LIMS) and Text Information Management		10
	Chromatographic dada analysis(CDS), Laboratory Information	08	10
	Computers as data analysis in Preclinical development:		
	Bioinformatics in Vaccine Discovery		
5.	Bioinformatics Databases, Concept of Bioinformatics, Impact of	05	20
	Bioinformatics: Introduction, Objective of Bioinformatics,		
	Pharma Information System		
	diagnostic System, Patient Monitoring System,		
	technology and adherence monitoring Diagnostic System, Lab-		

List of Experiments

Sr. No.	Experiment List	Hours
	Design a questionnaire using a word processing package to gather	
1.	information	04
2.	Create a HTML web page to show personal information.	04
	Retrieve the information of a drug and its adverse effects using online	04
4.	Creating mailing labels Using Label Wizard , generating label in MS	04
5.	Design a form in MS Access to view, add, delete and modify the patient	04
6.	Generating report and printing the report from patient database	04
	Creating invoice table using – MS Access	04
8.	Drug information storage and retrieval using MS Access	02
	TOTAL	30

Text Book(s):

Title	Author/s	Publication
Computer Application in Pharmaceutical	Sean Ekins –	A John Willey and Sons, INC.,
Research and Development –	Wiley-	Publication, USA
	Interscience	

Reference Book(s):

Title	Author/s	Publication
		CBS Publishers and
Bioinformatics (Concept, Skills and		Distributors, 4596/1- A, 11 Darya
Applications)	S.C.Rastogi	Gani, New Delhi – 110 002(INDIA)

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.
- End Semester Examination will consist of 60 Marks Exam.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE4040	COMPUTER APPLICATION IN PHARMACEUTICAL ENGINEERING			
CO 1	Understand different types of databases, applications of computers			
	and databases in pharmacy.			
CO 2	Illustrate the concept of number system in computers.			
CO 3	Understand web technologies such as HTML, XML, CSS, programming languages, Web			
	servers and pharmacy drug database.			
CO 4	Explain about bioinformatics and its impact in vaccine discovery.			

Mapping of CO with PO

SEPE4040	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	1	2	2	3	3		2		2	2	2	1
CO 2	1	1	2	1	2		2		1	1	2	1
CO 3		1	2	2	3		2		2	1		1
CO 4	1	2	2	2	3		2		2	2	2	1

Mapping of CO with PSO

SEPE4040	PSO1	PSO2	PSO3
CO 1	1	2	3
CO 2		1	
CO 3	1	1	1
CO 4	1	2	1

1: Remember	2: Understand	3: Apply
4: Analyze	5: Evaluate	6: Create

Module No	Content	RBT Level
1	Number system	1,2,3
2	Concept of Information Systems and Software	1,2
3	Web technologies	1,2,3
4	Web technologies	1,2,3
5	Application of computers in Pharmacy	1,4
6	Bioinformatics	1,3
7	Computers as data analysis in Preclinical	1,2
	development	

Department of Pharmaceutical Engineering

Course Code: SEPE4910

Course Name: Industry Aligned Learning-V

Prerequisite Course/s: --

Teaching & Examination Scheme:

Tea	ching Scheme		Examination Scheme (Marks)							
Theory	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
Theory	Fractical Futorial	Tutoriai		CE	ESE	CE	ESE	CE	ESE	Total
03			03	100						100

CE: Continuous Evaluation, ESE: End Semester Exam

Objective(s) of the Course:

To help learners to

- To give idea to the students related to documentation and records, laboratory practices and engineering practices.
- Know the principles of problem solving related to pharma industry.

Course Content:

	Section I											
Module	Content	Hours	Weightage									
No.			in %									
1.	Documentation and Records	20	30									
2.	Project Management for Pharmaceutical Industry	10	20									
	Section II											
Module	Content	Hours	Weightage									
No.			in %									
3.	Statistical and Problem-Solving Tools for continual	15	50									
3.	improvement	13	30									
	TOTAL	45	100									

Text Book(s):

Title	Author/s	Publication
ICH Guideline Q10	Global Society	Indian Press

Course Evaluation:

Theory:

- Continuous Evaluation consists of Two Test Each of 30 Marks and 1 Hour of duration.
- Submission of assignment which consists of 5 Questions to be answered under each module and it carries 10 Marks of Evaluation.

Course Outcome(s):

After the completion of the course, the students will be able to:

SEPE4910	INDUSTRY ALIGNED LEARNING-V

CO 1	Generate competency in accordance with current regulatory guidelines related to
	documentations.
CO 2	Relate the basic concepts and fundamentals of pharmaceutical industry.
CO 3	Implement various aspects of project management.
CO 4	Illustrate the concepts of Statistical and Problem-Solving Tools.

Mapping of CO with PO

SEPE4910	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1		1	1	1	1	2	2	3		1	2	1
CO 2		2	1	1	1		1			3	1	1
CO 3		1	1	1		3	1	1	3	1	3	1
CO 4	3	3	2	2	3					1		1

Mapping of CO with PSO

SEPE4910	PSO1	PSO2	PSO3
CO 1	1	2	1
CO 2	3	2	3
CO 3	1	2	2
CO 4	2	2	2

1: Remember	2: Understand	3: Apply		
4: Analyze	5: Evaluate	6: Create		

Module No	Content	RBT Level
1	Documentation and Records	1,2,3
2	Project Management for Pharmaceutical Industry	1,2,3
3	Statistical and Problem-Solving Tools for continual	1,2,3
	improvement	

Department of Pharmaceutical Engineering

Course Code: SEPE4920

Course Name: Project/Summer Internship

Prerequisite Course(s): --

Teaching & Examination Scheme:

Tea	ching Scheme	Examination Scheme (Marks)								
Theory	Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total
Theory	Fractical			CE	ESE	CE	ESE	CE	ESE	Total
	05		05			100				100

CE: Continuous Evaluation, ESE: End Semester Exam

Outline of the Course:

Project

- The project will be aligned with the aims of the engineering programme and its areas of specialization and shall be based on the recent trends in technology.
- The student shall carry out a comprehensive project at relevant academic / R&D / industrial organization.
- The student is required to submit a project report based on the work carried out.

Training

- The aim of this course is to use the internship experience to enable students to develop their engineering skills and practices.
- The student will be placed in industry/organization for 12 to 18 weeks and assessed for academic credit.
- The students may select industry on their own or one which is offered by institute.
- Students are expected to experience a real-life engineering workplace and understand how their engineering and professional skills can be utilized in industry.
- The student is required to submit a project report based on the work carried out.

Course Outcome(s):

After completion of the course, the students will be able to

SECH4920	PROJECT / SUMMER INTERNSHIP
CO 1	Apply fundamental and disciplinary concepts and methods in ways appropriate to
COT	their principal areas of study.
CO 2	Determine the challenges and future potential for his/her internship organization in
CO 2	particular and the sector in general.
CO 3	Test the theoretical learning in practical situations by accomplishing the tasks
603	assigned during the internship period.
	Apply various soft skills such as time management, positive attitude and
CO 4	communication skills during performance of the tasks assigned in internship
	organization.
CO 5	Analyze the functioning of internship organization and recommend changes for
603	improvement in processes.

Mapping of CO with PO:

SEPE4920	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2	3	2	3	3	3	3	3	3	3	1	2
CO 2	2	3	2	3	3	3	3	3	3	3	1	2
CO 3	2	3	2	3	3	3	3	3	3	3	1	3
CO 4	2	3	2	3	3	3	3	3	3	3	1	2
CO 5	2	3	2	3	3	3	3	3	3	3	1	3

Mapping of CO with PSO

SEPE4920	PSO1	PSO2	PSO3
CO 1	3	3	3
CO 2	3	3	3
CO 3	1	3	3
CO 4			
CO 5	3	3	3

Department of Pharmaceutical Engineering

Course Code: SEPE4930

Course Name: Project/Training

Prerequisite Course(s): --

Teaching & Examination Scheme:

Teaching Scheme (Hours/Week)				Examination Scheme (Marks)						
Theory Practical	Tutorial	Credit	Theory		Practical		Tutorial		Total	
Theory	heory Practical Tu	Tuloriai	Credit	CE	ESE	CE	ESE	CE	ESE	Total
	17		17			200	300			500

CE: Continuous Evaluation, ESE: End Semester Exam

Outline of the Course:

Project

- The project will be aligned with the aims of the engineering programme and its areas of specialization and shall be based on the recent trends in technology.
- The student shall carry out a comprehensive project at relevant academic / R&D / industrial organization.
- The student is required to submit a project report based on the work carried out.

Training

- The aim of this course is to use the internship experience to enable students to develop their engineering skills and practices.
- The student will be placed in industry/organization for 12 to 18 weeks and assessed for academic credit.
- The students may select industry on their own or one which is offered by institute.
- Students are expected to experience a real-life engineering workplace and understand how their engineering and professional skills can be utilized in industry.
- The student is required to submit a project report based on the work carried out.

Course Outcome(s):

After completion of the course, the students will be able to

SEPE4930	PROJECT / TRAINING				
CO 1	Apply fundamental and disciplinary concepts and methods in ways appropriate to				
CO 1	their principal areas of study.				
CO 2	Determine the challenges and future potential for his/her internship organization in				
particular and the sector in general.					
CO 3 Test the theoretical learning in practical situations by accomplish					
603	assigned during the internship period.				
	Apply various soft skills such as time management, positive attitude and				
CO 4	communication skills during performance of the tasks assigned in internship				
	organization.				
CO 5	Analyze the functioning of internship organization and recommend changes for				
60.3	improvement in processes.				

Mapping of CO with PO

SEPE4930	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12
CO 1	2	2										
CO 2		1	1		3	2	3	3	3	2	2	1
CO 3		2	1	2	1		1	1				1
CO 4								3	2	3	2	2
CO 5		1	1	2	3		1		2	1	2	

Mapping of CO with PSO

SEPE4930	PSO1	PSO2	PSO3
CO 1	2	1	
CO 2	1	2	1
CO 3	2	1	1
CO 4	3	2	3
CO 5	2	3	3